Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35839
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorJeng-Jie Huangen
dc.contributor.author黃政傑zh_TW
dc.date.accessioned2021-06-13T07:12:56Z-
dc.date.available2012-07-27
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-07-22
dc.identifier.citation[1.1] L. Siozade, J. Leymarie, P. Disseix, A. Vasson, M. Mihailovic, N. Grabdjean, M. Leroux,and J. Massies, “Modeling of Thermally Detected Optical Absorption and Luminescence of (In.Ga)N/GaN Heterostructures,” Solid State Comun. 115, 575 (2000).
[1.2] J. Wu, W. Walukiewicz, K.M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Small Band Gap Bowing in InxGa1-xN,” Appl. Phys. Lett. 80, 4741 (2002).
[1.3] J. Wu, W. Walukiewicz, K.M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal Bandgap Bowing in Group-III Nitride Allys,” Solid State Comun. 127, 411 (2003).
[1.4] F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L. Wei, “Energy band bowing parameter in AlxGa1-xN alloys,” J. Appl. Phys. 92, 4837 (2002).
[1.5] Y.-L. Li, J. M. Shah, P.-H. Leung, Th. Gessmann, and E. F. Schubert, “Performance Characteristics of White Light Sources Consisting of Multiple Light-emitting Diodes,” Proc. of SPIE 5187, 178 (2004).
[1.6] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence Conversion of Blue Light Emitting Diodes,” Appl. Phys. A 64, 417 (1997).
[1.7] S. Nakamura and G. Fasol, The Blue Laser Diode. Berlin, Germany: Springer, 216–219 (1997).
[1.8] J. Y. Tsao, An OIDA Technology Roadmap Update 2002.
[1.9] S. Nakamura, S. P. DenBaars, J. S. Speck, M. C. Schmidt, K. C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, H. Sato, H. Asamizu, A. Tyagi, H. Zhong, H. Masui, N. N. Fellows, M. Iza, T. Hashimoto, and K. Fujito, “Current Status of GaN-based Nonpolar/Semipolar/Polar Blue and White LEDs,” White LEDs-07, Tokyo, Japan, Nov. 26-30 (2007).
[1.10] http://compoundsemiconductor.net/csc/news-details.php?cat=news &id=37614.
[1.11] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, “InGaN-based Multi-quantum- well-structure Laser Diodes,” Jpn. J. App. Phys. Part 2, 35, L74-L76 (1996).
[1.12] S. Nakamura, “Characteristics of InGaN Multi-quantum-well- structure Laser Diodes,” Mater. Res. Soc. Proc. 449, 1135 (1996).
[1.13] T. Zimmermann, “P-channel InGaN-HFET Structure Based on Polarization Doping,” IEEE Electron Dev. Lett. 25, 450 (2004).
[1.14] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M.A. Khan, and M.S. Shur, “High-temperature Performance of AlGaN/GaN HFETs on SiC Substrates,” IEEE Electron Dev. Lett. 18, 492 (1997).
[1.15] B. S. Shelton, D. J. H. Lambert, J. J. Huang, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, “Selective Area Growth and Characterization of AlGaN/GaN Heterojunction Bipolar Transistors by Metalorganic Chemical Vapor Deposition,” IEEE Trans. Electron. Devices 48, 490 ( 2001).
[1.16] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Temperature Dependent Common Emitter Current Gain and Collector-emitter Offset Voltage Study in AlGaN/GaN Heterojunction Bipolar Transistors,” IEEE Electron Device Lett. 22, 157 (2001).
[1.17] E. Monroy, F. Call, E. Munoz, and F. Omnes, III-Nitride Semiconductors: Application and Devices, edited by E. Yu and M. Manasreh (Gordon and Breach), New York, (2000).
[1.18] E. Munoz, E. Monroy, J. Pau, F. Calle, F. Omnes, and P. Gibart, “III-nitrides and UV Detection, ” J. Phys.:Condens. Matter 13, 7115 (2001).
[1.19] J. F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1985).
[1.20] F. Bernardini, and V. Fiorentini, “First-principles Calculation of the Piezoelectric Tensor of III–V Nitrides,”Appl. Phys. Lett. 80, 4145 (2002).
[1.21] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, and S. P. DenBaars, T. Sota, “Effective Band Gap Inhomogeneity and Piezoelectric Field in InGaN/GaN Multiquantum Well Structures,” Appl. Phys. Lett. 73, 2006 (1998).
[1.22] P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, “Determination of Photoluminescence Mechanism in InGaN Quantum Wells,” Appl. Phys. Lett. 75, 2241 (1999).
[1.23] E. Berkowicz, D. Gershoni, G. Bahir, E. Lakin, D. Shilo, E. Zolotoyabko, A. C. Abare, S. P. Denbaars, and L. A. Coldren, “Measured and Calculated Radiative Lifetime and Optical Absorption of InxGa1-xN/GaN Quantum Structures,” Phys. Rev. B 61, 10994 (2000).
[1.24] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche & K. H. Ploog, 'Nitride Semiconductors Free of Electrostatic Fields for Efficient White Light-emitting Diodes,' Nature (London) 406, 865 (2000).
[1.25] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural Characterization of Nonpolar (11-20) A-plane GaN Thin Films Grown on (1-102) R-plane Sapphire,” Appl. Phys. Lett. 81, 469 (2002).
[1.26] K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, “Analysis of Polarization Anisotropy Along the c axis in the Photoluminescence of Wurtzite GaN,” Appl. Phys. Lett. 71, 1996 (1997).
[1.27] S. Ghosh, P. Misra, and H. T. Grahnb, B. Imer, S. Nakamura, S. P. DenBaars, and J. S. Speck, ”Polarized Photore?ectance Spectroscopy of Strained A-plane GaN Flms on R-plane Sapphire,” J. Appl. Phys. 98, 026105 (2005).
[1.28] N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization Anisotropy in the Electroluminescence of M-plane InGaN–GaN Multiple-quantum-well Light-emitting Diodes,”Appl. Phys. Lett. 86, 111101 (2005).
[1.29] M. Suzuki, T. Uenoyama, and A. Yanase, “First-principles Calculations of Effective-mass Parameters of AlN and GaN,” Phys. Rev. B 52, 8132 (1995).
[1.30] M. D. Craven, P. Waltereit, J. S. Speck, and S. P. DenBaars, “Well-width Dependence of Photoluminescence Emission from A-plane GaN/AlGaN Multiple Quantum Wells,” Appl. Phys. Lett. 84, 496 (2004)
[1.31] H. Sato, H. Hirasawa, H. Asamizu, N. Fellows, A. Tyagi, M. Saito, K. Fujito, J. S. Speck, S. P. Denbaars, and S. Nakamura, “High Power and High Efficiency Semipolar InGaN Light Emitting Diodes,” J. Light & Vis. Env. 32, 107 (2008)
[1.32] N. Fellows, H. Sato, H. Masui, S. P. Denbaars, and S. Nakamura, “Increased Polarization Ratio on Semipolar (11-22) InGaN/GaN Light-Emitting Diodes with Increasing Indium Composition,” Jpn. J. App. Phys. 47, 7854 (2008).
[1.33] B. Imer, F. Wu, M. D. Craven, J. S. Speck and S. P. Denbaars, “Stability of (1-100) M-Plane GaN Films Grown by Metalorganic Chemical Vapor Deposition,” Jpn. J. App. Phys. 45, 8644 (2006).
[1.34] B. A. Haskell, T. J. Baker, M. B. McLaurin, F. Wu, P. T. Fini, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Defect Reduction in (100) M-plane Gallium Nitride via Lateral Epitaxial Overgrowth by Hydride Vapor Phase Epitaxy ,” Appl. Phys. Lett. 86, 111917 (2005).
[1.35] B. A. Haskell, A. Chakraborty, F. Wu, H. Sasano, P. T. Fini, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Microstructure and Enhanced Morphology of Planar Nonpolar M-plane GaN Grown by Hydride Vapor Phase Epitaxy,” J. Electron. Mater. 34, 357 (2005).
[1.36] R. Armitage and H. Hirayama, “M-plane GaN Grown on M-sapphire by Metalorganic Vapor Phase Epitaxy,” Appl. Phys. Lett. 92, 092121 (2008).
[1.37] H. Sasaki, H. Sunakawa, N. Sumi, K. Yamamoto, and A. Usui, “Fabrication of Freestanding M-plane GaN Wafer by Using the HVPE Technique on An Aluminum Carbide Buffer Layer on An M-plane Sapphire Substrate,” J. Cryst. Growth 311, 2910 (2009).
[1.38] T. Koida, S. F. Chichibu, T. Sota, M. D. Craven, B. A. Haskell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Improved Quantum Efficiency in Nonpolar (11-20) AlGaN/GaN Quantum Wells Grown on GaN Prepared by Lateral Epitaxial Overgrowth,” Appl. Phys. Lett. 84, 3768 (2004).
[1.39] A. Chakraborty, K. C. Kim, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Defect Reduction in Nonpolar A-plane GaN Films Using in situ SiNx Nanomask,” Appl. Phys. Lett. 89, 041903 (2006).
[1.40] M. C. Schmidt, K. C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S. P. Denbaars, and J. S. Speck, “High Power and High External Efficiency M-Plane InGaN Light Emitting Diodes,” Jpn. J. App. Phys. 46, L126 (2007).
[1.41] P. Lee, T. Omstead, D. McKenna, and K. Jensen, “In situ Mass Spectroscopy and Thermogravimetric Studies of GaAs MOCVD Gas Phase and Surface Reactions,” J. Cryst. Growth 85, 165 (1987).
[1.42] M. Yoshida, H. Watanabe, and F. Uesugi, “Mass Spectrometric Study of Ga(CH3)3 and Ga(C2H5)3 Decomposition Reaction in H2 and N2,” J. Electrochem. Soc. 132, 677 (1985).
[1.43] R. P. Pawlowski, C. Theodoropoulos, A. G. Salinger, T. J. Mountziaris, H. K. Moffat, J. N. Shadid, E. J. Thrush, “Fundamental Models of the Metalorganic Vapor-phase Epitaxy of Gallium Nitride and Their Use in Reactor Design,” J. Cryst. Growth 221, 622 (2000).
[1.44] M. J. Paisley and R. F. Davis, “Molecular Beam Epitaxy of Nitride Thin Films,” J. Cryst. Growth 127, 136 (1993)
[1.45] S. Yoshida, S. Misawa and S. Gonda, “Improvements on the Electrical and Luminescent Properties of Reactive Molecular Beam Epitaxially Grown GaN Films by Using AlN?coated Sapphire Substrates,” Appl. Phys. Lett. 42, 427 (1983).
[1.46] S. Yoshida, S. Misawa and S. Gonda, “Epitaxial Growth of GaN/AlN Heterostructures,” J. Vacuum Sci. Technol. B 1, 250 (1983).
[1.47] R. C. Powell, G. A. Tomash, Y.-W. Kim, J. A. Thornton and J. E. Greene, in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, Eds. J. T. Glass, R. Messier and N. Fujimori (Materials Research Society, Boston, MA, 1989) p. 525.
[1.48] R. C. Powell, N. E. Lee and J. E. Greene, “Growth of GaN (0001) 1×1 on Al2O3 (0001) by Gas?source Molecular Beam Epitaxy,” Appl. Phys. Lett. 60, 2505 (1992).
[1.49] Z. Sitar, M. J. Paisley, D. K. Smith and R. F. Davis, “Design and Performance of an Electron Cyclotron Resonance Plasma Source for Standard Molecular Beam Epitaxy Equipment,” Rev. Sci. Instr., 61, 2407 (1990).
[1.50] A. Bhattacharyya, W. Li, J. Cabalu, T. D. Moustakasa, D. J. Smith, and R. L. Hervig, ”Efficient P-type Doping of GaN Films by Plasma-assisted Molecular Beam Epitaxy,” Appl. Phys. Lett. 85, 4956 (2004).
[1.51] J. M. Myoung, K. H. Shim, O. Gluschenkov, C. Kim, K. Kim, S. Kim, and S.G. Bishop. “Effect of Growth Temperature on the Properties of P-type GaN Grown by Plasma-assisted Molecular Beam Epitaxy,” J. Cryst. Growth 182, 241 (1997).
[1.52] E. Haus, I. P. Smorchkova, B. Heying, P. Fini, C. Poblenz, T. Mates, U. K. Mishra, J. S. Speck, “The Role of Growth Conditions on the P-doping of GaN by Plasma-assisted Molecular Beam Epitaxy,” J. Cryst. Growth 246, 55 (2002).
[1.53] I. P. Smorchkova, E. Haus, B. Heying, P. Kozodoy, P. Fini, J. P. Ibbetson, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Mg Doping of GaN layers Grown by Plasma-assisted Molecular Beam Epitaxy,” Appl. Phys. Lett. 76, 718 (2000).
[2.1] S. Ghosh, P. Misra, and H. T. Grahnb, B. Imer, S. Nakamura, S. P. DenBaars, and J. S. Speck, ”Polarized Photore?ectance Spectroscopy of Strained A-plane GaN Flms on R-plane Sapphire,” J. Appl. Phys. 98, 026105 (2005).
[2.2] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, ”Effective Band Gap Inhomogeneity and Piezoelectric Field in InGaN/GaN Multiquantum Well Structures,” Appl. Phys. Lett. 73, 2006 (1998).
[2.3] C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved Photoluminescence of InxGa1-xN/GaN Multiple Quantum Well Structures: Effect of Si Doping in the Barriers,“ Phys. Rev. B 64, 245339 (2001).
[2.4] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride Semiconductors Free of Electrostatic Fields for Efficient White Light-emitting Diodes,“ Nature (London) 406, 865 (2000).
[2.5] A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstic, V. Mandavilli, J. Yang, M.A. Khan, “Visible Light-emitting Diodes Using A-plane GaN–InGaN Multiple Quantum Wells Over R-plane Sapphire,“ Appl. Phys. Lett. 84, 3663 (2004).
[2.6] M. C. Schmidt, K. C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar M-Plane InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46, L190 (2007).
[2.7] D. F. Feezell, M. C. Schmidt, R. M. Farrell, K. C. KIM, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, “AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes,” Jpn. J. Appl. Phys. 46, L284 (2007).
[2.8] B. Imer, F. Wu, M. D. Craven, J. S. Speck and S. P. DenBaars, “Stability of (1100) M-Plane GaN Films Grown by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45, 8644 (2006).
[2.9] A. Chakaraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura and U. K. Mishra, “Demonstration of Nonpolar M-Plane InGaN/GaN Light-Emitting Diodes on Free-Standing M-Plane GaN Substrates,” Jpn. J. Appl. Phys. 44, L173 (2005).
[2.10] X. Ni, Y. Fu, Y. T. Moon, N. Biyikli, H. Morkoc, “X. Ni, Y. Fu, Y. T. Moon, N. Biyikli, H. Morkoc, “Optimization of (11-20) A-plane GaN Growth by MOCVD on (1-102) R-plane Sapphire,” J. Crystal Growth 290 (2006) 66.” J. Crystal Growth 290, 166 (2006).
[2.11] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, S. P. DenBaars, “Threading Dislocation Reduction via Laterally Overgrown Nonpolar (11-20) A-plane GaN,” Appl. Phys. Lett. 81, 1201 (2002).
[2.12] M. Araki, N. Mochimizo, K. Hoshino, and K. Tadatomo, “Direct Growth of A-Plane GaN on R-Plane Sapphire Substrate by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 46, 555 (2007).
[2.13] D. Li, H. Chen, H. B. Yu, Y. J. Han, X. H. Zheng, Q. Huang, J. M. Zhou, “Effects of Carrier Gas on the Stress of A-plane GaN Flms Grown on R-plane Sapphire Substrates by Metalorganic Chemical Vapor Deposition,” J. Crystal Growth 263, 76 (2004).
[2.14] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural Characterization of Nonpolar (11-20) A-plane GaN Thin FilmsGgrown on (1-102) R-plane Sapphire,” Appl. Phys. Lett. 81, 469 (2002).
[2.15] T. Paskova, R. Kroeger, S. Figge, and D. Hommel, V. Darakchieva and B. Monemar, E. Preble, A. Hanser, N. M. Williams, and M. Tutor, “High-quality Bulk A-plane GaN Sliced from Boules in Comparison to Heteroepitaxially Grown Thick Films on R-plane Sapphire,” Appl. Phys. Lett. 89, 051914 (2006).
[2.16] T. Akasaka, Y. Kobayashi, and T. Makimoto, “Growth of Nonpolar AlN (11-20) and (1-100) Films on SiC Substrates by Flow-rate Nodulation Epitaxy,” Appl. Phys. Lett. 90, 121919 (2007).
[2.17] P. Kozodoy, S. Keller, S. P. DenBaars, U. K. Mishra, “MOVPE Growth and Characterization of Mg-doped GaN,” J. Crystal Growth 195, 265 (1998).
[3.1] M. D. Craven, F. Wu, A. Chakraborty, B. Imer, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Microstructural Evolution of A-plane GaN Grown on A-plane SiC by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Lett. 84, 1281 (2004).
[3.2] A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstis, V. Mandavilli, J. Yang, and M. Asif Khan, “Visible Light-emitting Diodes Using A-plane GaN–InGaN Multiple Quantum Wells over R-plane Sapphire,” Appl. Phys. Lett. 84, 3663 (2004).
[3.3] C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved Photoluminescence of InxGa1-xN/GaN Multiple Quantum Well Structures: Effect of Si Doping in the Barriers,” Phys. Rev. B 64, 245339 (2001).
[3.4] J. P. Liu, J. B. Limb, J.-H. Ryou, D. Yoo, C. A. Horne, R. D. Dupuis, Z. H. Wu, A. M. Fischer, F. A. Ponce, A. D. Hanser, L. Liu, E. A. Preble, and K. R. Evans, “Blue Light Emitting Diodes Grown on Freestanding (11-20) A-plane GaN Substrates,” Appl. Phys. Lett. 92, 011123 (2008).
[3.5] B. Imer, F. Wu, M. D. Craven, J. S. Speck and S. P. DenBaars, “Stability of (1100) M-Plane GaN Films Grown by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 45, 8644 (2006).
[3.6] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride Semiconductors Free of Electrostatic Fields for Efficient White Light-emitting Diodes,“ Nature (London) 406, 865 (2000).
[3.7] K. C. Kim, M. C. Schmidt, H. Sato, F. Wu, N. Fellows, Z. Jia, M. Saito, S. Nakamura, S. P. DenBaars, J. S. Speck, and K. Fujito, “Study of Nonpolar M-plane InGaN/GaN Multiquantum Well Light Emitting Diodes Grown by Homoepitaxial Metal-organic Chemical Vapor Deposition,” Appl. Phys. Lett. 91, 181120 (2007).
[3.8] M. C. Schmidt, K. C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Demonstration of Nonpolar M-Plane InGaN/GaN Laser Diodes,“ Jpn. J. Appl. Phys. 46, L190 (2007).
[3.9] M. D. Craven, P. Waltereit, J. S. Speck, and S. P. DenBaars, “Well-width Dependence of Photoluminescence Emission from A-plane GaN/AlGaN Multiple Quantum wells,“ Appl. Phys. Lett. 84, 496 (2004).
[3.10] N. Akopian, G. Bahir, D. Gershoni, M. D. Craven, J. S. Speck, and S. P. DenBaars, “Optical Evidence for Lack of Polarization in (11-20) Oriented GaN/(AlGa)N Quantum Structures,” Appl. Phys. Lett. 86, 202104 (2005).
[3.11] E. Kuokstis, C. Q. Chen, M. E. Gaevski, W. H. Sun, J. W. Yang, G. Simin, M. Asif Khan, H. P. Maruska, D. W. Hill, M. C. Chou, J. J. Gallagher, and B. Chai, “Polarization Effects in Photoluminescence of C- and M-plane GaN/AlGaN Multiple Quantum Wells,” Appl. Phys. Lett. 81, 4130 (2002).
[3.12] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural Characterization of Nonpolar (11-20) A-plane GaN Thin Films Grown on (1-102) R-plane Sapphire,” Appl. Phys. Lett. 81, 469 (2002).
[3.13] T. Koida, S. F. Chichibu, T. Sota, M. D. Craven, B. A. Haskell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Improved Quantum Efficiency in Nonpolar (11-20) AlGaN/GaN Quantum Wells Grown on GaN Prepared by Lateral Epitaxial Overgrowth,” Appl. Phys. Lett. 84, 3768 (2004).
[3.14] M. Araki, N. Mochimizo, K. Hoshino, and K. Tadatomo, “Direct Growth of A-Plane GaN on R-Plane Sapphire Substrate by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 46, 555 (2007).
[3.15] X. Ni, Y. Fu, Y. T. Moon, N. Biyikli, and H. Morkoc, “Optimization of (11-20) A-plane GaN Growth by MOCVD on (1-102) R-plane Sapphire,” J. Crystal Growth 290, 166 (2006).
[3.16] Kobayashi, T. Makimoto, and Y. Horikoshi, “Flow-Rate Modulation Epitaxy of GaAs,” Jpn. J. Appl. Phys. 24, L962 (1985).
[3.17] N. Kobayashi, T. Makimoto ,Y. Yamauchi, and Y. Horikoshi, “Flow?rate Modulation Epitaxy of GaAs and AlGaAs,” J. Appl. Phys. 66, 640 (1989).
[3.18] T. Akasaka, Y. Kobayashi, and T. Makimoto, “Growth of Nonpolar AlN (11-20) and (1-100) Films on SiC substrates by Flow-rate Modulation epitaxy,” Appl. Phys. Lett. 90, 121919 (2007).
[3.19] X. Ni, U. Ozgur, H. Morkoc, Z. Liliental-Weber, and H. O. Everitt, “Epitaxial Lateral Overgrowth of A-plane GaN by Metalorganic Chemical Vapor Deposition,” J. Appl. Phys. 102, 053506 (2007).
[3.20] P. P. Paskov, R. Schifano, T. Paskova, T. Malinauskas, J. P. Bergman, B.Monemar, S. Figge, and D. Hommel, “Structural Defect-related Emissions in Nonpolar A-plane GaN,” Physica B (Amsterdam) 376/377, 473 (2006).
[3.21] T. Paskova, V. Darakchieva, P. P. Paskov, J. Birch, E. Valcheva, P. O. A. Persson, B. Arnaudov, S. Tungasmita, and B. Monemar, “Nonpolar A-plane HVPE GaN: Growth and In-plane Anisotropic Properties,” Phys. Status Solidi (c) 2, 2027 (2005).
[3.22] P. Kozodoy, S. Keller, S. P. DenBaars, U. K. Mishra, “MOVPE Growth and Characterization of Mg-doped GaN,” J. Crystal Growth 195, 265 (1998).
[4.1] Z. Q. Fang, B. Claflin, D. C. Look, L. L. Kerr, and X. Li, “Electron and Hhole Traps in N-doped ZnO Grown on P-type Si by Metalorganic Chemical Vapor Deposition,” J. Appl. Phys. 102, 013528 (2007).
[4.2] F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu, and W. P. Beyermann, “P-type ZnO Films with Solid-source Phosphorus Doping by Molecular-beam Epitaxy,” Appl. Phys. Lett. 88, 052106 (2006).
[4.3] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped P-type ZnO by Molecular- beam Epitaxy,” Appl. Phys. Lett. 87, 152101 (2005).
[4.4] F. X. Xiu, L. J. Mandalapu, Z. Yang, J. L. Liu, G. F. Liu, and J. A. Yarmoff, “Bi-induced Acceptor States in ZnO by Molecular-beam Epitaxy,” Appl. Phys. Lett. 89, 052103 (2006).
[4.5] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering,” Adv. Mater. 18, 2720 (2006).
[4.6] J. C. Sun, H. W. Liang, J. Z. Zhao, J. M. Bian, Q. J. Feng, L. Z. Hua, H. Q. Zhang, X. P. Liang, Y. M. Luo, and G. T. Du, “Ultraviolet Electroluminescence from N-ZnO:Ga/p-ZnO:N Homojunction Device on Sapphire Substrate with P-type ZnO:N Layer Formed by Annealing in N2O Plasma Ambient,” Chem. Phys. Lett. 460, 548 (2008).
[4.7] W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang, and C. L. Zhang, “Blue-yellow ZnO Homostructural Light-emitting Diode Realized by Metalorganic Chemical Vapor Deposition Technique,” Appl. Phys. Lett. 88, 092101 (2006).
[4.8] L. Li, Z. Yang, J. Y. Kong, and J. L. Liu, “Blue Electroluminescence from ZnO Based Heterojunction Diodes with CdZnO Active Layers,” Appl. Phys. Lett. 95, 232117 (2009).
[4.9] S. P. Chang, R. W. Chuang, S. J. Chang, Y. Z. Chiou, and C. Y. Lu, “MBE N-ZnO/MOCVD P-GaN Heterojunction Light-emitting Diode,” Thin Solid Films 517, 5054 (2009).
[4.10] J. W. Mares, M. Falanga, A. V. Thompson, A. Osinsky, J. Q. Xie, B. Hertog, A. Dabiran, P. P. Chow, S. Karpov, and W. V. Schoenfeld, “Hybrid CdZnO/GaN Quantum-well Light Emitting Diodes,” J. Appl. Phys. 104, 093107 (2008).
[4.11] R. W. Chuang, R. X.Wu, L. W. Lai and C. T. Lee, “ZnO-on-GaN Heterojunction Light-emitting Diode Grown by Vapor Cooling Condensation Technique,” Appl. Phys. Lett. 91, 231113 (2007).
[4.12] Y. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev and B. M. Ataev, “Observation of 430 nm Electroluminescence from ZnO/GaN Heterojunction Light-emitting Diodes,” Appl. Phys. Lett. 83, 2943 (2003).
[4.13] D. J. Rogers, F. H. Teherani, A. Yasan, K. Minder, P.Kung and M. Razeghi, “Electroluminescence at 375?nm from A ZnO/GaN:Mg /c-Al2O3 Heterojunction Light Emitting Diode,” Appl. Phys. Lett. 88, 141918 (2006).
[4.14] G. Namkoong, E. Trybus1, M. C. Cheung, W. A. Doolittle1, A. N. Cartwright, I. Ferguson, T. Y. Seong, and J. Nause, “Dual-Color Emission in Hybrid III–Nitride/ZnO Light Emitting Diodes,” Appl. Phys. Express 3, 022101 (2010).
[4.15] T. Suzuki, C. Harada, H. Goto, T. Minegishi, A. Setiawan, H. J. Ko, M. W. Cho, and T. Yai, “Relation between Interdiffusion and Polarity for MBE Growth of GaN Epilayers on ZnO Substrates,” Curr. Appl. Phys. 4, 643(2004).
[4.16] B. Lin, Z. Fu, and Y. Jia, “Green Luminescent Center in Undoped Zinc Oxide Films Deposited on Silicon Substrates,” Appl. Phys. Lett. 79, 943 (2001).
[4.17] L. H. Quang, S. J. Chua, K. P. Loh, E. Fitzgerald, “The Effect of Post-annealing Treatment on Photoluminescence of ZnO Nanorods Prepared by Hydrothermal Synthesis,” J. Cryst. Growth 287, 157 (2006).
[4.18] M. A. Reshchikov and H. Morkoc, “Luminescence Properties of Defects in GaN,” J. Appl. Phys. 97, 061301 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35839-
dc.description.abstract在本論文中,我們首先報告使用有機金屬化學氣相沉積技術在r-面(1-102)藍寶石基板上成長無孔洞的a-面(11-20)氮化鎵薄膜的結果。為了改善a-面氮化鎵薄膜的晶體品質,我們在長晶的過程利用流量調變的技術。藉由流量調變技術,X光繞射量測結果顯示其搖幌曲線的半高全寬可以明顯的降低。另外經由原子力顯微鏡或薄膜厚度輪廓測度儀的量測結果可以得知樣品表面形態的粗糙度也可以降低。這裡所提到的流量調變技術指的是在成長氮化鎵薄膜時交替的開啟及關閉鎵原子源,然而整個成長過程並不改變氮原子的流量。在這樣的長晶技術下,我們發現最佳化的流量調變週期為分別開啟及關閉十秒鐘的三甲基鎵氣流。高鎵環境成長是達到無孔洞a-面氮化鎵薄膜的主要條件,在如此高鎵環鏡成長條件下,關閉三甲基鎵流量時候時仍然持續供給的氮原子可以使得化學計量達成鎵氮比為1:1條件生長,而且鎵原子也可以在這段期間藉由遷移而達到較平的表面。因此,a-面氮化鎵樣品的晶體品質可以明顯改善。
另外,除了使用流量調變技術之外,我們也結合了側向磊晶再生長的技術。然而,不管有沒有使用側向磊晶再生長的技術,我們都可以發現使用流量調變方式成長出來的a-面氮化鎵樣品的c-或m-mosaic條件都顯著的改善。使用側向磊晶再生長技術,若又搭配使用流量調變的技術,則在10 x 10微米平方範圍內的表面粗糙度可以由1.58奈米降低至0.647奈米。藉由光激發螢光量測結果,我們可以斷定使用流量調變技術成長的a-面氮化鎵有較佳的光學特性。另外,使用流量調變技術成長的a-面氮化鎵樣品也有較好的拉伸應變釋放。
除此之外,我們在n-型氧化鋅上成長p-型氮化鎵以製造異質接面型的氧化鋅發光二極體。為了降低後續成長p-型氮化鎵時所經歷的高溫熱劣化,p-型氮化鎵的成長是選用分子束磊晶技術而非高溫成長的有機金屬化學氣相沉積技術。我們使用p-型氮化鎵/n-型氧化鋅二極體的電流電壓量測結果來判斷p-型氮化鎵的p-型摻雜是否有效。藉由改變不同鎂蒸發源的溫度,我們發現只有當溫度大攝氏430度時,才有較好的電流整流效果。接著我們量測p-型氮化鎵/n-型氧化鋅二極體的電流激發螢光頻譜。這個非常寬的螢光頻譜包含了紫光、藍光、橙紅光、紅光及近紅外光等。然而,我們並沒觀測到預期中的近能隙邊緣紫外光頻譜。究其原因乃為p-型氮化鎵材料之高能隙尾態吸收,只有能量較小的光子可以透過此p-型氮化鎵層而被偵測。
zh_TW
dc.description.abstractIn this dissertation, first pit-free a-plane GaN (11-20) growth on r-plane sapphire (1-102) substrate with metalorganic chemical vapor deposition (MOCVD) is reported. We use the flow-rate modulation epitaxy (FME) technique to improve the crystal quality of an a-plane GaN film. With the FME technique, the width of the rocking curve in X-ray diffraction measurement is significantly reduced. Also, the surface roughness based on either atomic-force-microscopy scanning or a-step profiling is decreased. Here, the FME technique means to alternatively turn on and off the supply of Ga atoms while N atoms are continuously supplied without changing the flow rate. Under the used growth conditions, the optimized FME parameters include the on/off period at 10/10 sec. During the period of closing the flow of TMGa, the continuous supply of nitrogen can lead to the formation of stoichiometry structure under the high-Ga growth condition, which is required for the growth pit-free morphology. Also, during this period, Ga atoms can further migrate to result in a flatter surface. Therefore, the crystal quality of the a-plane GaN sample can be improved.
Besides, we study the crystal quality of a-plane GaN grown on r-plane sapphire substrate based on the FME technique combined with epitaxial lateral overgrowth (ELOG). With or without epitaxial lateral overgrowth (ELOG), either c- or m-mosaic condition is significantly improved in the samples of using FME. With ELOG, the surface roughness can be reduced from 1.58 to 0.647 nm in an area of 10 x 10 square microns by using the FME technique. Based on the results of photoluminescence measurement, one can also conclude the better optical property of the FME-grown a-plane GaN thin films. Besides, it is shown that tensile strain is more relaxed in the FME samples.
In addition, we grow p-GaN layer on n-ZnO templates to fabricate a heterojunction ZnO-based LED. To prevent the thermal annealing effects of high temperature growth of the top p-GaN layer, the p-GaN layer is grown with molecular beam epitaxy (MBE) instead of high temperature MOCVD growth. The current-voltage (I-V) curves of p-GaN/n-GaN diodes are used as the indicators for the successful p-type doping of a p-GaN layer. It is found that only when the Mg effusion cell temperature is as high as 430 oC, we can obtain good current rectifying results. The electroluminescence (EL) characterization of such a p-GaN/n-ZnO diode shows broad band luminance, covering violet, blue, orange-red, red and near infra-red peaks. However, the expected near band edge ultra-violet (UV) luminance of the ZnO or GaN films cannot be observed. This is due to the high band-tail absorption of the top p-GaN layer. Only those photons with lower energy can pass through the p-GaN layer and be observed.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:12:56Z (GMT). No. of bitstreams: 1
ntu-100-D93941003-1.pdf: 1776982 bytes, checksum: a671dd88b05fac1b08be80bc376b95f0 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
口試委員會審定書………………………………………………… i
誌謝………………………………………………………………… ii
中文摘要…………………………………………………………… iii
Abstract…………………………………………………………… v
Contents…………………………………………………………… vii
Chapter 1
Introduction
1.1 Applications of Group-III Nitride Semiconductors……………1
1.2 Properties for Group-III Nitride…………………………………3
1.2.1 C-plane……………………………………………………………………4
1.2.2 Non-polar and Semi-polar……………………………………………8
1.3 Growth Techniques for Group-III Nitride Materials ……….10
1.3.1 Metalorganic Chemical Vapor Deposition………………………10
1.3.2 Plasma-assisted Molecular Beam Epitaxy………………………13
1.4 Research Motivations………………………………………………15
1.5 Thesis Organization………………………………………………16
References………………………………………………………………20
Chapter 2
High-quality Aplane GaN Grown with Flow-rate Modulation Epitaxy on R-plane Sapphire SubstrateGaN
2.1 Introduction………………………………………………………37
2.2 Sample Growth Conditions ……………………………………41
2.3 Sample Characterization Results………………………………42
2.4 Discussions and Conclusions …………………………………46
2.5 Summary…………………………………………………………47
References……………………………………………………………49
Chapter 3
Improved A-plane GaN Quality Grown with Flow-rate Modulation Epitaxy and Epitaxial Lateral Overgrowth on R-plane Sapphire Substrate
3.1 Introduction………………………………………………………60
3.2 Sample Growth Conditions ……………………………………62
3.3 Sample Characterization Results………………………………63
3.4 Discussions and Conclusions………………………………………65
3.5 Summary…………………………………………………………67
References………………………………………………………………68
Chapter 4
Heterostructure Growth of p-GaN on n-ZnO with Molecular Beam Epitaxy
4.1 Introduction………………………………………………………78
4.2 Growth Conditions and Device Fabrication…………………80
4.3 Characterization Results………………………………………81
4.3.1 p-GaN/n-GaN…………………………………………………………81
4.3.2 p-GaN/n-ZnO…………………………………………………………82
4.4 Discussions…………………………………………………………83
4.5 Summary………………………………………………………………85
References……………………………………………………………………86
Chapter 5
Conclusions and Future Work………………………………………………94
Publication list………………………………………………………………97
dc.language.isoen
dc.subject流量調變zh_TW
dc.subject氮化鎵zh_TW
dc.subject電流激發螢光頻譜zh_TW
dc.subject側向磊晶再光長zh_TW
dc.subject發光二極體zh_TW
dc.subject氧化鋅zh_TW
dc.subjectFMEen
dc.subjectELen
dc.subjectLEDen
dc.subjectZnOen
dc.subjectGaNen
dc.subjectELOGen
dc.title使用有機金屬氣相沉積及分子束磊晶技術成長三五族氮化物半導體zh_TW
dc.titleGrowths of III-V Nitride Semiconductors with the Techniques of Metalorganic Vapor Phase Deposition and Molecular Beam Epitaxyen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee彭隆瀚,吳育任,杜立偉,黃建璋,江衍偉
dc.subject.keyword氮化鎵,流量調變,側向磊晶再光長,氧化鋅,發光二極體,電流激發螢光頻譜,zh_TW
dc.subject.keywordGaN,FME,ELOG,ZnO,LED,EL,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2011-07-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved