請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35826完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明亭 | |
| dc.contributor.author | Ven-The Kao | en |
| dc.contributor.author | 高文德 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:12:13Z | - |
| dc.date.available | 2007-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | Albini, A., Iwamoto, Y., Kleinman, H. K., Martin, G. R., Aaronson, S. A.,
Kozlowski, J. M. and McEwan, R. N. (1987). A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47, 3239-45. Baker, A. H., Edwards, D. R. and Murphy, G. (2002). Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115, 3719-27. Bement, W. M., Forscher, P. and Mooseker, M. S. (1993). A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J Cell Biol 121, 565-78. Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z. et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2, 737-44. Bernards, R. and Weinberg, R. A. (2002). A progression puzzle. Nature 418, 823. Bouton, A. H., Riggins, R. B. and Bruce-Staskal, P. J. (2001). Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene 20, 6448-58. Bussemakers, M. J., van Moorselaar, R. J., Giroldi, L. A., Ichikawa, T., Isaacs, J. T., Takeichi, M., Debruyne, F. M. and Schalken, J. A. (1992). Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res 52, 2916-22. Cance, W. G., Harris, J. E., Iacocca, M. V., Roche, E., Yang, X., Chang, J., Simkins, S. and Xu, L. (2000). Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res 6, 2417-23. Carragher, N. O. and Frame, M. C. (2004). Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol 14, 241-9. Chambers, A. F., Groom, A. C. and MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2, 563-72. Clark, E. A., Golub, T. R., Lander, E. S. and Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532-5. Deryugina, E. I., Ratnikov, B., Monosov, E., Postnova, T. I., DiScipio, R., Smith, J. W. and Strongin, A. Y. (2001). MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast 48 carcinoma cells. Exp Cell Res 263, 209-23. DiPersio, C. M., Shao, M., Di Costanzo, L., Kreidberg, J. A. and Hynes, R. O. (2000). Mouse keratinocytes immortalized with large T antigen acquire alpha3beta1 integrin-dependent secretion of MMP-9/gelatinase B. J Cell Sci 113 (Pt 16), 2909-21. Egeblad, M. and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161-74. Fidler, I. J. (1970). Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2'-deoxyuridine. J Natl Cancer Inst 45, 773-82. Fidler, I. J. (1975). Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 35, 218-24. Fidler, I. J. and Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893-5. Fridman, R., Toth, M., Chvyrkova, I., Meroueh, S. O. and Mobashery, S. (2003). Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev 22, 153-66. Friedl, P. and Wolf, K. (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3, 362-74. Garton, A. J. and Tonks, N. K. (1999). Regulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST. J Biol Chem 274, 3811-8. Guo, W. and Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5, 816-26. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-14. Hart, I. R. and Fidler, I. F. (1978). An in vitro quantitative assay for tumor cell invasion. Cancer Res 38, 3218-24. Hart, I. R. and Fidler, I. J. (1980). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res 40, 2281-7. Hauck, C. R., Hsia, D. A., Ilic, D. and Schlaepfer, D. D. (2002). v-Src SH3-enhanced interaction with focal adhesion kinase at beta 1 integrin-containing invadopodia promotes cell invasion. J Biol Chem 277, 12487-90. Heath, J. P. and Holifield, B. F. (1993). On the mechanisms of cortical actin flow and its role in cytoskeletal organisation of fibroblasts. Symp Soc Exp Biol 47, 35-56. Hendrix, M. J., Seftor, E. A., Seftor, R. E. and Fidler, I. J. (1987). A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett 38, 137-47. Hsia, D. A., Mitra, S. K., Hauck, C. R., Streblow, D. N., Nelson, J. A., Ilic, D., 49 Huang, S., Li, E., Nemerow, G. R., Leng, J. et al. (2003). Differential regulation of cell motility and invasion by FAK. J Cell Biol 160, 753-67. Hua, J. and Muschel, R. J. (1996). Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res 56, 5279-84. Huang, Y. T., Hwang, J. J., Lee, P. P., Ke, F. C., Huang, J. H., Huang, C. J., Kandaswami, C., Middleton, E., Jr. and Lee, M. T. (1999). Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol 128, 999-1010. Hynes, R. O. (2003). Metastatic potential: generic predisposition of the primary tumor or rare, metastatic variants-or both? Cell 113, 821-3. Ishibe, S., Joly, D., Liu, Z. X. and Cantley, L. G. (2004). Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell 16, 257-67. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A. and Massague, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537-49. Kaverina, I., Krylyshkina, O. and Small, J. V. (2002). Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol 34, 746-61. Kim, D., Kim, S., Koh, H., Yoon, S. O., Chung, A. S., Cho, K. S. and Chung, J. (2001). Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. Faseb J 15, 1953-62. Klemke, R. L., Leng, J., Molander, R., Brooks, P. C., Vuori, K. and Cheresh, D. A. (1998). CAS/Crk coupling serves as a 'molecular switch' for induction of cell migration. J Cell Biol 140, 961-72. Laurie, G. W., Leblond, C. P. and Martin, G. R. (1982). Localization of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol 95, 340-4. Lim, Y., Han, I., Jeon, J., Park, H., Bahk, Y. Y. and Oh, E. S. (2004). Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J Biol Chem 279, 29060-5. Liotta, L. A., Lee, C. W. and Morakis, D. J. (1980). New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Lett 11, 141-52. Lu, Z., Jiang, G., Blume-Jensen, P. and Hunter, T. (2001). Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol Cell Biol 21, 4016-31. 50 Martin, P. and Lewis, J. (1992). Actin cables and epidermal movement in embryonic wound healing. Nature 360, 179-83. Mitra, S. K., Hanson, D. A. and Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6, 56-68. Morini, M., Mottolese, M., Ferrari, N., Ghiorzo, F., Buglioni, S., Mortarini, R., Noonan, D. M., Natali, P. G. and Albini, A. (2000). The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. Int J Cancer 87, 336-42. Mundy, G. R. and Yoneda, T. (1995). Facilitation and suppression of bone metastasis. Clin Orthop Relat Res, 34-44. Nicolson, G. L. (1988). Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7, 143-88. Nobes, C. D. and Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144, 1235-44. Noe, V., Fingleton, B., Jacobs, K., Crawford, H. C., Vermeulen, S., Steelant, W., Bruyneel, E., Matrisian, L. M. and Mareel, M. (2001). Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114, 111-118. Owens, L. V., Xu, L., Craven, R. J., Dent, G. A., Weiner, T. M., Kornberg, L., Liu, E. T. and Cance, W. G. (1995). Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55, 2752-5. Ozanne, B. W., McGarry, L., Spence, H. J., Johnston, I., Winnie, J., Meagher, L. and Stapleton, G. (2000). Transcriptional regulation of cell invasion: AP-1 regulation of a multigenic invasion programme. Eur J Cancer 36, 1640-8. Postma, M., Bosgraaf, L., Loovers, H. M. and Van Haastert, P. J. (2004). Chemotaxis: signalling modules join hands at front and tail. EMBO Rep 5, 35-40. Price, L. S., Leng, J., Schwartz, M. A. and Bokoch, G. M. (1998). Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol Biol Cell 9, 1863-71. Ramaswamy, S., Ross, K. N., Lander, E. S. and Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nat Genet 33, 49-54. Ren, X. D., Kiosses, W. B., Sieg, D. J., Otey, C. A., Schlaepfer, D. D. and Schwartz, M. A. (2000). Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J Cell Sci 113 (Pt 20), 3673-8. Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T. and Horwitz, A. R. (2003). Cell migration: integrating signals from front to back. Science 302, 1704-9. Riento, K. and Ridley, A. J. (2003). Rocks: multifunctional kinases in cell 51 behaviour. Nat Rev Mol Cell Biol 4, 446-56. Sato, H. and Seiki, M. (1993). Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8, 395-405. Schaller, M. D. (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459-72. Schlaepfer, D. D., Mitra, S. K. and Ilic, D. (2004). Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692, 77-102. Seftor, R. E., Seftor, E. A. and Hendrix, M. J. (1999). Molecular role(s) for integrins in human melanoma invasion. Cancer Metastasis Rev 18, 359-75. Sein, T. T., Thant, A. A., Hiraiwa, Y., Amin, A. R., Sohara, Y., Liu, Y., Matsuda, S., Yamamoto, T. and Hamaguchi, M. (2000). A role for FAK in the Concanavalin A-dependent secretion of matrix metalloproteinase-2 and -9. Oncogene 19, 5539-42. Sieg, D. J., Hauck, C. R., Ilic, D., Klingbeil, C. K., Schaefer, E., Damsky, C. H. and Schlaepfer, D. D. (2000). FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2, 249-56. Small, J. V., Stradal, T., Vignal, E. and Rottner, K. (2002). The lamellipodium: where motility begins. Trends Cell Biol 12, 112-20. Sood, A. K., Coffin, J. E., Schneider, G. B., Fletcher, M. S., DeYoung, B. R., Gruman, L. M., Gershenson, D. M., Schaller, M. D. and Hendrix, M. J. (2004). Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol 165, 1087-95. Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S. et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98, 10869-74. Sternlicht, M. D. and Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17, 463-516. Stetler-Stevenson, W. G., Aznavoorian, S. and Liotta, L. A. (1993). Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9, 541-73. Takenawa, T. and Miki, H. (2001). WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114, 1801-9. Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2, 442-54. 52 Thomas, G. J., Lewis, M. P., Hart, I. R., Marshall, J. F. and Speight, P. M. (2001). AlphaVbeta6 integrin promotes invasion of squamous carcinoma cells through up-regulation of matrix metalloproteinase-9. Int J Cancer 92, 641-50. Timpl, R., Rohde, H., Robey, P. G., Rennard, S. I., Foidart, J. M. and Martin, G. R. (1979). Laminin--a glycoprotein from basement membranes. J Biol Chem 254, 9933-7. Tremblay, L., Hauck, W., Aprikian, A. G., Begin, L. R., Chapdelaine, A. and Chevalier, S. (1996). Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 68, 164-71. Turner, C. E. (2000). Paxillin and focal adhesion signalling. Nat Cell Biol 2, E231-6. Valles, A. M., Beuvin, M. and Boyer, B. (2004). Activation of Rac1 by paxillin-Crk-DOCK180 signaling complex is antagonized by Rap1 in migrating NBT-II cells. J Biol Chem 279, 44490-6. van de Vijver, M. J., He, Y. D., van't Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., Schreiber, G. J., Peterse, J. L., Roberts, C., Marton, M. J. et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347, 1999-2009. Van Wart, H. E. and Birkedal-Hansen, H. (1990). The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A 87, 5578-82. Vleminckx, K., Vakaet, L., Jr., Mareel, M., Fiers, W. and van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66, 107-19. Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., Singer, R. H., Segall, J. E. and Condeelis, J. S. (2004). Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64, 8585-94. Weiner, T. M., Liu, E. T., Craven, R. J. and Cance, W. G. (1993). Expression of focal adhesion kinase gene and invasive cancer. Lancet 342, 1024-5. Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C. and Carragher, N. O. (2004). SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol 24, 8113-33. Woodhouse, E. C., Chuaqui, R. F. and Liotta, L. A. (1997). General mechanisms of metastasis. Cancer 80, 1529-37. Wozniak, M. A., Modzelewska, K., Kwong, L. and Keely, P. J. (2004). Focal adhesion regulation of cell behavior. Biochim Biophys Acta 1692, 103-19. 53 Wyckoff, J. B., Segall, J. E. and Condeelis, J. S. (2000). The collection of the motile population of cells from a living tumor. Cancer Res 60, 5401-4. Yan, L., Moses, M. A., Huang, S. and Ingber, D. E. (2000). Adhesion-dependent control of matrix metalloproteinase-2 activation in human capillary endothelial cells. J Cell Sci 113 (Pt 22), 3979-87. Yano, H., Mazaki, Y., Kurokawa, K., Hanks, S. K., Matsuda, M. and Sabe, H. (2004). Roles played by a subset of integrin signaling molecules in cadherin-based cell-cell adhesion. J Cell Biol 166, 283-95. Yu, Q. and Stamenkovic, I. (1999). Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13, 35-48. Zhai, J., Lin, H., Nie, Z., Wu, J., Canete-Soler, R., Schlaepfer, W. W. and Schlaepfer, D. D. (2003). Direct interaction of focal adhesion kinase with p190RhoGEF. J Biol Chem 278, 24865-73. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35826 | - |
| dc.description.abstract | 稍早的文獻顯示,並非所有的癌細胞都具有轉移的能力,真正具備轉
移能力的癌細胞可能只佔整個族群的0.1%,如何篩選出具有轉移能力的癌 細胞,成為近幾年重要的課題。癌細胞入侵血管是癌細胞轉移過程中最為 關鍵的步驟,本實驗室利用in vitro invasion assay,從A431 P 成功的 篩選出一批具有較強入侵能力的細胞,命名為A431 III,隨後進行細胞特 性之分析,並尋求可能的分子機制以解釋為何A431 III 比A431 P 更具侵 略性。 癌細胞要入侵,必須具備:1)降低細胞間附著力,2)增強細胞之 移動能力,3)增加matrix metalloproteinase (MMP)的釋放,分解 extracellular matrix (ECM),以利細胞之移動。初步的檢測顯示,A431 III 提高了MMP-9 之分泌量,並且具備較強的移動能力。此外,於cell spreading assay,我們發現A431 III 具有較強之細胞延展性,能過度活 化下游FAK,造成FAK 磷酸化上升。這些結果顯示A431 III 提升細胞之移 動能力與MMP 之分泌,可能經由FAK 調控,最終導致細胞具入侵性。 | zh_TW |
| dc.description.abstract | It was reported previously that not all of primary tumor possesses
metastatic ability, and only about 0.1 percent tumor cells display higher invasive potential. How to isolate and identify these high invasive cells from primary tumor cells became an important issue in this field. Cell invasion is a fundamental component of tumor cell metastasis. In this study we use in vitro invasion assay appartus to select higher invasive carcinoma cells. The assay was performed by A431 P tumor cells on a porous membrane coated with matrix, after which the cell invading the matrix were collected (designated A431 I) and subcultured. The same assay was repeated until the A431 III was obtained. We then explore whether the A431 III has higher invasive potential. First, using gelatin zymography, we observed that A431 III secreted higher amounts of MMP-9 than that of A431 P. Secondly, using wound healing assay, cell attachment and spreading experiment. We observed that A431 III exhibit higher motility potential as well. This data suggest that A431 III possesses higher metastatic potential and FAK might play important role in regulate of cell motility and invasion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:12:13Z (GMT). No. of bitstreams: 1 ntu-94-R92b46038-1.pdf: 2232964 bytes, checksum: 75ab9277ae77ef08c47197b1ac468674 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 引言
壹、癌細胞轉移(metastasis)機制 1 貳、癌細胞入侵(invasion)機制 2 一、降低細胞間結合力(Disruption of cell-cell adhesion) 2 二、癌細胞移動能力(tumor cell mobility) 3 a.細胞移動的機制 3 b.細胞突觸:lamellipodia, filopodia 的產生 3 三、Matrix metalloproteinase(MMP)與ECM 的降解 4 a. Matrix metalloproteinase(MMP) family 4 b. MMP 的活化與其作用位置 5 c. MMP 影響細胞癌化之機制 6 參、In vitro invasion assay 6 肆、Integrin signaling 與癌細胞入侵能力之關係 7 一、Focal adhesion kinase(FAK)之蛋白結構與focal adhesion assembly 8 二、FAK 對Rho family 的調控 9 三、FAK 對focal adhesion disassembly 的調控 10 伍、癌細胞衍生轉移能力之模式 10 陸、實驗目的 11 材料與方法 壹、Cell culture and antibody 18 貳、Higher invasive potential cell selection, In vitro Invasion assay and haptotaxis migration assay 18 參、Growth experiment 19 肆、Cell lysis and Western blotting 20 伍、Immunoprecipation 22 陸、Gelatin zymography 22 柒、Cell-ECM attachment and spreading assay 23 捌、Wound healing migration assay 24 ii 玖、Immunofluorescence 24 拾、FACSC for cell size test 25 結果 壹、確認篩選出之A431 III 具有更強的入侵能力 26 貳、MMPs 對A431 III 入侵能力之影響 27 參、比較A431 P 與A431 III 之細胞移動能力 28 肆、A431 III 形成穩定之lamellipodia 結構,助其快速移動 29 伍、比較A431 P 與A431 III 之細胞延展性 30 陸、A431 III 癌細胞內FAK 的活性變化 31 討論 43 引用文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 入侵性A431癌細胞之篩選 | zh_TW |
| dc.subject | MMP-9 FAK invasion | en |
| dc.title | 具強入侵性A431癌細胞之篩選與定性,及其機制探討 | zh_TW |
| dc.title | In vitro selection and characterization of highly invasive tumor cells from A431 cell line | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張震東,孟子青,黃銓珍,陳宏文 | |
| dc.subject.keyword | 入侵性A431癌細胞之篩選, | zh_TW |
| dc.subject.keyword | MMP-9 FAK invasion, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
