請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35794完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴凌平 | |
| dc.contributor.author | Shu-Hui Chiang | en |
| dc.contributor.author | 江書慧 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:10:30Z | - |
| dc.date.available | 2005-08-04 | |
| dc.date.copyright | 2005-08-04 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | Bailey CJ, Turner RC. (1996) Metformin. N Engl J Med. 334:574-9.
Bailey CJ, Day C. (2003) Antidiabetic drugs. Br J Cardiol. 10:128-36. Barnes PJ, Karin M. (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 336(15):1066-71. Caballero AE. (2003) Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res. 11(11):1278-89. Carlsen H, Alexander G, Austenaa LM, Ebihara K, Blomhoff R. (2004) Molecular imaging of the transcription factor NF-kappaB, a primary regulator of stress response. Mutat Res. 551(1-2):199-211. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J. 9(10):899-909. Corton JM, Gillespie JG, Hawley SA, Hardie DG. (1995) 5-aminoimidazole–4- carboxamide ribonucleoside. A specific method for activating AMP- activated protein kinase in intact cells? Eur J Biochem. 229(2):558-65. Cusi K, DeFronzo RA. (1998) Metformin: a review of its metabolic effects. Diabetes Rev. 6:89-131. DeFronzo RA, Goodman AM. (1995) Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 333(9):541-9. Dzau VJ, Braun-Dullaeus RC, Sedding DG. (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med. 8(11):1249-56. Fehmann HC, Heyn J. (2002) Plasma resistin levels in patients with type 1 and type 2 diabetes mellitus and in healthy controls. Horm Metab Res. 34(11-12):671-3. Ferran C, Millan MT, Csizmadia V, Cooper JT, Brostjan C, Bach FH, Winkler H. (1995) Inhibition of NF-kappa B by pyrrolidine dithiocarbamate blocks endothelial cell activation. Biochem Biophys Res Commun. 214(1):212-23. Fryer LG, Parbu-Patel A, Carling D. (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem. 277(28):25226-32. Gaur U, Aggarwal BB. (2003) Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol. 66(8):1403-8. Giri S, Nath N, Smith B, Viollet B, Singh AK, Singh I. (2004) 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J Neurosci. 24(2):479-87. Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, Ziegelasch HJ, Lindner J. (1996) Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia. 39(12):1577-83. Hansson GK. (2001) Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol. 21(12):1876-90. Hardie DG. (2004) The AMP- activated protein kinase pathway-- new players upstream and downstream. J Cell Sci. 117(Pt 23):5479-87. Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG. (1995) 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin- dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem. 270(45):27186-91. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 271(44):27879-87. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. (2002) A central role for JNK in obesity and insulin resistance. Nature. 420(6913):333-6. Hubbard AK, Rothlein R. (2000) Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med. 28(9):1379-86. Ido Y, Carling D, Ruderman N. (2002) Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes. 51(1):159-67. Ido Y, Yagihashi N, Cacicedo JM, Ruderman NR. (2002) AMPkinase activation prevents TNF-alpha induced ICAM expression by inhibiting NF-κB transactivation but not by inhibiting their translocation or DNA-binding. Diabetes. 51:A458. Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, Shulman GI. (1998) Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med. 338(13):867-72. Inzucchi SE. (2002) Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA. 287(3):360-72. Johansen K. (1999) Efficacy of metformin in the treatment of NIDDM. Meta-analysis. Diabetes Care. 22(1):33-7. Karin M, Ben-Neriah Y. (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol. 18:621-63. Kassab E, McFarlane SI, Sower JR. (2001) Vascular complications in diabetes and their prevention. Vasc Med. 6(4):249-55. Kawanami D, Maemura K, Takeda N, Harada T, Nojiri T, Imai Y, Manabe I, Utsunomiya K, Nagai R. (2004) Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun. 314(2):415-9. Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA. (2003) AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans. 31(Pt 1):162-8. Kirpichnikov D, McFarlane SI, Sowers JR. (2002) Metformin: an update. Ann Intern Med. 137(1):25-33. Krentz AJ, Bailey CJ. (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 65(3):385-411. Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. (2005) Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol. 288(5):H2031-41. Lihn AS, Jessen N, Pedersen SB, Lund S, Richelsen B. (2004) AICAR stimulates adiponectin and inhibits cytokines in adipose tissue. Biochem Biophys Res Commun. 316(3):853-8. Lyon CJ, Law RE, Hsueh WA. (2003) Minireview: adiposity, inflammation, and atherogenesis. Endocrinology. 144(6):2195-200. Mather KJ, Verma S, Anderson TJ. (2001) Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 37(5):1344-50. Migita H, Morser J. (2005) 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) signals through retinoic acid receptor-related orphan receptor-alpha but not peroxisome proliferator-activated receptor-gamma in human vascular endothelial cells: the effect of 15d-PGJ2 on tumor necrosis factor-alpha-induced gene expression. Arterioscler Thromb Vasc Biol. 25(4):710-6. Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB. (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci U S A.93(17):9090-5. Natoli G, Costanzo A, Guido F, Moretti F, Levrero M. (1998) Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signalling. Biochem Pharmacol. 56(8):915-20. Pasceri V, Wu HD, Willerson JT, Yeh ET. (2000) Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator- activated receptor-gamma activators. Circulation. 101(3):235-8. Perkins ND. (2000) The Rel/NF-kappa B family: friend and foe. Trends Biochem Sci. 25(9):434-40. Roebuck KA, Finnegan A. (1999) Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol. 66(6):876-88. Ruderman NB, Cacicedo JM, Itani S, Yagihashi N, Saha AK, Ye JM, Chen K, Zou M, Carling D, Boden G, Cohen RA, Keaney J, Kraegen EW, Ido Y. (2003) Malonyl-CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes. Biochem Soc Trans. 31(Pt1): 202-6. Sambandam N, Lopaschuk GD. (2003) AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res. 42(3):238-56. Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG. (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest. 113(2):274-84. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. (2001) The hormone resistin links obesity to diabetes. Nature. 409(6818):307-12. UK Prospective Diabetes Study Group. (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 352(9131):854-65. Vanden Berghe W, Vermeulen L, De Wilde G, De Bosscher K, Boone E, Haegeman G. (2000) Signal transduction by tumor necrosis factor and gene regulation of the inflammatory cytokine interleukin-6. Biochem Pharmacol. 60(8):1185-95. Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD, Mickle DA. (2003) Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation. 108(6):736-40. Walpola PL, Gotlieb AI, Cybulsky MI, Langille BL. (1995) Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler Thromb Vasc Biol. 15(1):2-10. Wojtaszewski JF, Jorgensen SB, Hellsten Y, Hardie DG, Richter EA. (2002) Glycogen- dependent effects of 5-aminoimidazole-4- carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes. 51(2):284-92. Wojtaszewski JF, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE, Kiens B, Richter EA. (2003) Regulation of 5'AMP- activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab. 284(4):E813-22. World Health Organization. (1999) Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Report of a WHO Consultation. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. (2000) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 148(2):209-14. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 108(8):1167-74. Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG 4th, Schlattner U, Neumann D, Brownlee M, Freeman MB, Goldman MH. (2004) Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem. 279(42):43940-51. 行政院衛生署 (2005) 中華民國九十三年臺灣地區死因統計結果摘要. 行政院衛生署衛生統計資訊網. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35794 | - |
| dc.description.abstract | 背景:糖尿病是現今盛行率及致死率都非常高的文明病,而且將近80%的第二型糖尿病病人是死於心血管疾病或中風。治療糖尿病的口服用藥很多,其中metformin的作用機轉是增加細胞對胰島素的敏感度,而且metformin在臨床試驗中證實了可以減少大血管疾病。本研究之目的在研究metformin以及其他改善胰島素阻抗的藥物是否能改善內皮細胞的發炎反應。
方法與結果:發炎因子如TNF-α會引發內皮細胞的發炎反應,像是增加ICAM-1表現、IL-6釋放等等,在動脈粥樣硬化的過程當中扮演著啟動者的角色。本研究即以TNF-α引起人類臍靜脈內皮細胞的發炎反應為研究模式。在本實驗中發現,處理TNF-α 10 ng/ml 24小時後,內皮細胞的IL-6釋放量約是未經任何處理的15倍,而metformin能抑制TNF-α誘發的IL-6釋放量,在預處理metformin 100 μM後,抑制TNF-α誘發產生之IL-6的作用就已具有統計意義(p<0.05);metformin 500 μM可以抑制了接近一半的IL-6釋放量;metformin 1000 μM更可以更加抑制IL-6的釋放量。當使用了NF-κB的抑制劑- CAPE (caffeic acid phenethyl ester)(25 μg/ml)與PDTC (pyrrolidine dithiocarbamate)(20 μM)後,能部份的抑制TNF-α誘發產生的IL-6,因此TNF-α誘發產生IL-6的作用與NF-κB有關,而metformin(500 μM)也可以抑制TNF-α (10 ng/ml)所誘發的IκB-α分解作用及NF-κB p65細胞核位移作用, PI3K抑制劑wortmanin(100 nM)可以減弱metformin的抑制作用。由於PI3K與metformin磷酸化/活化AMPK有關,因此推論metformin的抑制作用可能與活化PI3K及其下游的AMPK有關。另外,metformin (30μM)亦能抑制TNF-α誘發的ICAM-1表現。同樣有增加胰島素敏感度作用的PPAR-γ受器親和劑15d-PGJ2,在本篇也發現能抑制TNF-α誘發的ICAM-1表現。而與胰島素阻抗有關的脂肪激素resistin,並沒有發現能明顯的增加內皮細胞的IL-6分泌或ICAM-1表現。 結論:降血糖藥物metformin可能是藉由PI3K的途徑磷酸化/活化AMPK後,抑制TNF-α所誘發的IκB-α分解作用,進而影響NF-κB p65位移到細胞核的作用,因此能抑制TNF-α所誘導產生的IL-6與ICAM-1。由於可見,metformin對於內皮細胞的發炎反應具有保護的作用,這將可以解釋metformin在臨床上可以減少大血管疾病。 | zh_TW |
| dc.description.abstract | Background:Type 2 diabetes is a disease with high morbidity and mortality in modern society, and nearly 80% of deaths in those with type 2 diabetes involve cardiovascular disease or stroke. Among many oral hypoglycemic drugs, metformin lowers blood glucose level through the improvement of insulin sensitivity. Clinical trials have demonstrated that metformin is unique in protecting patients with type 2 diabetes from macrovascular disease. The aim of the present study was to investigate whether metformin and other agents involved in insulin resistance modulated inflammatory reactions in endothelial cells.
Methods and Results:The proinflammatory factor TNF-α can induce inflammatory reaction in endothelial cells and promote IL-6 secretion and ICAM-1 expression. Therefore, we used TNF-α induced inflammatory reactions in HUVECs as the experimental model. In our study, the secretion of IL-6 after TNF-α (10 ng/ml) treatment for 24hr was about 15 times that of basal level. Metformin concentration-dependently inhibited TNF-α induced IL-6 secretion. When pretreated with 100 μM metformin, the secretion of IL-6 induced by TNF-α was significantly reduced when compared with positive control (10 ng/ml TNF-α only). The secretion of IL-6 after 500 μM and 1000 μM metformin pretreatment were about 50% and 40% that of positive control respectively. We found that TNF-α induced IL-6 secretion was related to NF-κB activation because NF-κB inhibitors CAPE (pyrrolidine dithiocarbamate) (25 μg/ml) and PDTC (pyrrolidine dithiocarbamate) (20 μM) partially inhibited the IL-6 secretion induced by TNF-α. Moreover, metformin (500 μM) also inhibited TNF-α (10 ng/ml) induced IκB-α degradation and NF-κB p65 translocation to the nucleus, and these inhibitory effects were blocked by a PI3K inhibitor wortmanin (100 nM). Because the phosphorylation/activation of AMPK by metformin is PI3K- dependent, we speculated that the activation of AMPK might be concerned in the inhibitory effect of metformin. Similar to IL-6 secretion, metformin (30 μM) also inhibited TNF-α induced ICAM-1 expression. PPAR-γ agonist 15d-PGJ2 is an insulin sensitizer, too. We also found that 15d-PGJ2 inhibited TNF-α induced ICAM-1 expression. Resistin is an adipokine and is related to insulin resistant. We found that it did not change IL-6 secretion or ICAM-1 expression in HUVECs. Conclusions:In our study, metformin had inhibitory effects on TNF-α induced IL-6 secretion and ICAM-1 expression in HUVECs. We speculated that these effects were due to its ability to activate AMPK through a PI3K-dependent pathway and to inhibit TNF-α induced IκB-α degradation to prevent NF-κB p65 from translocation to the nucleus. We demonstrated that metformin had protective effects on endothelial inflammation. However, its precise mechanisms of action remain to be elucidated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:10:30Z (GMT). No. of bitstreams: 1 ntu-94-R92443014-1.pdf: 2089246 bytes, checksum: abbecad0ea8f041a998af27bc08b75b0 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 縮寫表………………………………………………… 0
中文摘要……………………………………………… 1 英文摘要……………………………………………… 3 第一章 緒論………………………………………… 5 第二章 實驗材料與方法…………………………… 32 第三章 實驗結果…………………………………… 45 第四章 討論………………………………………… 64 第五章 結論與展望………………………………… 74 參考文獻……………………………………………… 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 發炎反應 | zh_TW |
| dc.subject | 內皮細胞 | zh_TW |
| dc.subject | metformin | en |
| dc.subject | inflammation | en |
| dc.subject | endothelial | en |
| dc.subject | TNF-α | en |
| dc.title | Metformin對於TNF-α所誘發之內皮細胞發炎反應的抑制作用及其機轉探討 | zh_TW |
| dc.title | Inhibitory Effects of Metformin on TNF-α Induced Endothelial Inflammation and its Mechanisms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林俊立,蘇銘嘉,楊偉勛 | |
| dc.subject.keyword | 內皮細胞,發炎反應, | zh_TW |
| dc.subject.keyword | metformin,TNF-α,endothelial,inflammation, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
