請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35787
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊德良(Der-Liang Young) | |
dc.contributor.author | Chia-Ming Fan | en |
dc.contributor.author | 范佳銘 | zh_TW |
dc.date.accessioned | 2021-06-13T07:10:07Z | - |
dc.date.available | 2008-07-29 | |
dc.date.copyright | 2005-07-29 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-26 | |
dc.identifier.citation | 1.1.J.C. Tannehill, D.A. Anderson and R.H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Taylor & Francis Press, Philadelphia, 1984.
1.2.J.N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, New York, 1993. 1.3.R.W. Lewis, P. Nithiarasu and K.N. Seetharamu, Fundamentals of the Finite Element Mehtod for Heat and Fluid Flow, John Wiley & Sons Ltd., London, 2004. 1.4.J.H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag, New York, 2002. 1.5.P.K. Kythe, An Introduction to Boundary Element Methods, CRC Press, New York, 1995. 1.6.H. Li, T.Y. Ng, J.Q. Cheng and K.Y. Lam, Hermite-Cloud: a novel true meshless method, Computational Mechanics, 33, 30-41, 2003. 1.7.S.H. Park and S.K. Youn, The least-squares meshfree method, International Journal for Numerical Methods in Engineering, 52, 997-1012, 2001. 1.8.X. Zhang, X.H. Liu, K.Z. Song and M.W. Lu, Least-squares collocation meshless method, International Journal for Numerical Methods in Engineering, 51, 1089-1100, 2001. 1.9.T. Shu, J. Zhang and S.N. Atluri, A meshless numerical method based on local boundary integral equation (LBIE) to solve linear and non-linear boundary value problems, Engineering Analysis with Boundary Elements, 23, 375-389, 1999. 1.10. D.W. Kim and Y. Kim, Point collocation methods using the fast moving least-square reproducing kernel approximation, International Journal for Numerical Methods in Engineering, 56, 1445-1464, 2003. 1.11. X. Jin, G. Li and N.R. Aluru, On the equivalence between least-squares and kernel approximations in meshless methods, CMES: Computer Modeling in Engineering and Sciences, 2(4), 447-462, 2001. 1.12.C. Zuppa and A. Cardona, A collocation meshless method based on local optimal point interpolation, International Journal for Numerical Methods in Engineering, 57, 509-536, 2003. 1.13.X. Jin, G. Li and N.R. Aluru, New approximations and collocation scheme in the finite cloud method, Computers and Structures, 83, 1366-1385, 2005. 1.14.M. Rodriguez-Paz and J. Bonet, A corrected smooth particle hydrodynamics formulation of the shallow-water equations, Computers and Structures, 83, 1396-1410, 2005. 1.15.R. Ata and A. Soulaimani, A stabilized SPH method for inviscid shallow water flows, International Journal for Numerical Methods in Fluids, 47, 139-159, 2005. 1.16.Y.L. Wu and G.R. Liu, A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation, Computational Mechanics, 30, 355-365, 2003. 1.17.J.G. Wang and G.R. Liu, A point interpolation meshless method based on radial basis functions, International Journal for Numerical Methods in Engineering, 54, 1623-1648, 2002. 1.18.C. Shu, H. Ding and K.S. Yeo, Computation of incompressible Navier-Stokes equations by local RBF-based differential quadrature method, CMES: Computer Modeling in Engineering and Sciences, 7(2), 195-205, 2005. 1.19.X.K. Zhang, K.C. Kwon and S.K. Youn, The least-squares meshfree method for the steady incompressible viscous flow, Journal of Computational Physics, 206, 182-207, 2005. 1.20.Q.X. Wang, H. Li and K.Y. Lam, Development of new meshless-point weighted least-squares (PWLS) method for computational mechanics, Computational Mechanics, 35, 170-181, 2005. 1.21.Y.C. Hon and W. Chen, Boundary knot method for 2D and 3D Helmholtz and convection-diffusion problems under complicated geometry, International Journal for Numerical Methods in Engineering, 56, 1931-1948, 2003. 1.22.S. Reutskiy, A boundary method of Trefftz type with approximate trial functions, Engineering Analysis with Boundary Elements, 26, 341-353, 2002. 1.23.M.R. Akella and G.R. Kotamraju, Trefftz indirect method applied to nonlinear potential problem, Engineering Analysis with Boundary Elements, 24, 459-465, 2000. 1.24.V.D. Kupradze and M.A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, USSR Computational Mathematics and Mathematical Physics, 4, 82-126, 1964. 1.25.R. Mathon and R.L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM Journal on Numerical Analysis, 14, 638-650, 1977. 1.26.A. Bogomolny, Fundamental solutions method for elliptic boundary value problems, SIAM Journal on Numerical Analysis, 22, 644-669, 1985. 1.27.G. Burgess and E. Mahajerin, The fundamental collocation method applied to the non-linear Poisson equation in two dimensions, Computers & Structures, 27(6), 763-767, 1987. 1.28.J. Raamachandran, Bending of plates with varying thickness by charge simulation method, Engineering Analysis with Boundary Elements, 10, 143-145, 1992. 1.29.Y.C. Hon and T. Wei, A fundamental solution method for inverse heat conduction problem, Engineering Analysis with Boundary Elements, 28, 489-495, 2004. 1.30.G. Burgess and E. Mahajerin, A comparison of the boundary element and superposition methods, Computers & Structures, 19(5/6), 697-705, 1984. 1.31.M.A. Golberg, The method of fundamental solutions for Poisson’s equations, Engineering Analysis with Boundary Elements, 16, 205-213, 1995. 1.32.K. Balakrishnan and P.A. Ramachandran, A particular solution Trefftz method for non-linear Poisson problems in heat and mass transfer, Journal of Computational Physics, 150, 239-267, 1999. 1.33.K. Balakrishnan and P.A. Ramachandran, Osculatory Interpolation in the method of fundamental solution for nonlinear Poisson problems, Journal of Computational Physics, 172, 1-18, 2001. 1.34.A. Karageorghis, The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation, Applied Mathematics Letters, 14, 837-842, 2001. 1.35.C.W. Chen, C.M. Fan, D.L. Young, K. Murugesan and C.C. Tsai, Eigenanalysis for membranes with stringers using the methods of fundamental solutions and domain decomposition, CMES: Computer Modeling in Engineering and Sciences, 8(1), 29-44, 2005. 1.36.A. Karageorghis and G. Fairweather, The method of fundamental solutions for the numerical solution of the biharmonic equation, Journal of Computational Physics, 69, 434-459, 1987. 1.37.A. Karageorghis and G. Fairweather, The Almansi method of fundamental solutions for solving biharmonic problems, International Journal for Numerical Methods in Engineering, 26, 1665-1682, 1988. 1.38.A. Poullikkas, A. Karageorghis and G. Georgiou, Methods of fundamental solutions for harmonic and biharmonic boundary value problem, Computational Mechanics, 21, 416-423, 1998. 1.39.B. Jin, A meshless method for the Laplace and biharmonic equations subjected to noisy boundary data, CMES: Computer Modeling in Engineering and Sciences, 6(3), 253-261, 2004. 1.40.G. Fairweather and R.L. Johnston, The method of fundamental solutions for problems in potential theory, In Treatment of Integral Equations by Numerical Methods, C.T.H. Baker and G.F. Miller (ed.), Academic Press, London, 1982, 349-359. 1.41.R.L. Johnston and G. Fairweather, The method of fundamental solutions for problems in potential flow, Applied Mathematical Modelling, 8, 265-270, 1984. 1.42.A. Karageorghis and G. Fairweather, The method of fundamental solutions for the solution of nonlinear plane potential problems, IMA Journal of Numerical Analysis, 9, 231-242, 1989. 1.43.A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, International Journal for Numerical Methods in Engineering, 44, 1653-1669, 1999. 1.44.M. Katsurada and H. Okamoto, The collocation points of the fundamental solution method for the potential problem, Computers and Mathematics with Applications, 31(1), 123-137, 1996. 1.45.M.A. Golberg and C.S. Chen, The method of fundamental solution for potential, Helmholtz and diffusion problems, In Boundary Integral Methods – Numerical and Mathematical Aspects, M.A. Golberg (ed.), Computational Mechanics Publications, Boston, 1998, 103-176. 1.46.C.S. Chen, Y.F. Rashed and M.A. Golberg, A mesh-free method for linear diffusion equations, Numerical Heat Transfer, Part B, 33, 469-486, 1998. 1.47.P.W. Partridge and B. Sensale, The method of fundamental solutions with dual reciprocity for diffusion and diffusion-convection using subdomains, Engineering Analysis with Boundary Elements, 24, 633-541, 2000. 1.48.K. Balakrishnan and P.A. Ramachandran, The method of fundamental solutions for linear diffusion-reaction equations, Mathematical and Computer Modelling, 31, 221-237, 2000. 1.49.C.C. Tsai, Meshless Numerical Methods and their Engineering Applications, Ph.D. thesis, Department of Civil Engineering, National Taiwan University, Taiwan, 2002. 1.50.D.L. Young, C.C. Tsai, K. Murugesan, C.M. Fan and C.W. Chen, Time-dependent fundamental solutions for homogeneous diffusion problems, Engineering Analysis with Boundary Elements, 29, 1463-1473, 2004. 1.51.D.L. Young, C.C. Tsai and C.M. Fan, Direct approach to solve nonhomogeneous diffusion problems using fundamental solutions and dual reciprocity methods, Journal of the Chinese Institute of Engineers, 27(4), 597-609, 2004. 1.52.D.L. Young, S.P. Hu, C.W. Chen, C.M. Fan and K. Murugesan, Analysis of elliptical waveguides by the method of fundamental solutions, Microwave and Optical Technology Letters, 44(6), 552-558, 2005. 1.53.S.P. Hu, C.M. Fan, C.W. Chen and D.L. Young, Method of fundamental solutions for Stokes’ first and second problems, Journal of Mechanics, 21(1), 31-37, 2005. 1.54.A. Poullikkas, A. Karageorghis, G. Georgiou and J. Ascough, The method of fundamental solutions for Stokes flows with a free surface, Numerical Methods for Partial Differential Equations, 14, 667-678, 1998. 1.55.C.C. Tsai, D.L. Young and A.H.-D. Cheng, Meshless BEM for three-dimensional Stokes flows, CMES: Computer Modeling in Engineering and Sciences, 3(1), 117-128, 2002. 1.56.S.J. Jan, Meshless Methods for 2D and 3D Incompressible Viscous Flows, Ph.D. thesis, Department of Civil Engineering, National Taiwan University, Taiwan, 2004. 1.57.D.L. Young, S.J. Jane, C.M. Fan, K. Murugesan and C.C. Tsai, The method of fundamental solutions for 2D and 3D Stokes problems, Journal of Computational Physics. (In press) 1.58.D.L. Young, C.W. Chen, C.M. Fan, K. Murugesan and C.C. Tsai, The method of fundamental solutions for Stokes flow in a rectangular cavity with cylinders, European Journal of Mechanics B/Fluids. (In press) 1.59.C.W. Chen, D.L. Young, C.C. Tsai and K. Murugesan, The method of fundamental solutions for 2D inverse Stokes problems, Computational Mechanics. (In press) 1.60.A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric elasticity problems, Computational Mechanics, 25, 524-532, 2000. 1.61.G.C. de Medeiros, PW. Partridge and J.O. Brandao, The method of fundamental solutions with dual reciprocity for some problems in elasticity, Engineering Analysis with Boundary Elements, 28, 453-461, 2004. 1.62.D.L. Young, C.M. Fan, C.C. Tsai and C.W. Chen, The method of fundamental solutions and domain decomposition method for degenerate seepage flownet problems, Journal of the Chinese Institute of Engineers. (In press) 1.63.P.S. Kondapalli, D.J. Shippy and G. Fairweather, The method of fundamental solutions for transmission and scattering of elastic waves, Computer Methods in Applied Mechanics and Engineering, 96, 255-269, 1992. 1.64.G. Fairweather, A. Karageorghis and P.A. Martin, The method of fundamental solutions for scattering and radiation problems, Engineering Analysis with Boundary Elements, 27, 759-769, 2003. 1.65.D.L. Young and J.W. Ruan, Method of fundamental solutions for scattering problems of electromagnetic waves, CMES: Computer Modeling in Engineering and Sciences, 7(2), 223-232, 2005. 1.66.K. Nishida, Numerical method for Oseen’s linearized equations in three-dimensional exterior domain, Journal of Computational and Applied Mathematics, 152, 405-409, 2003. 1.67.J.R. Berger and A. Karageorghis, The method of fundamental solutions for heat conduction in layered materials, International Journal for Numerical Methods in Engineering, 45, 1681-1694, 1999. 1.68.D. Redekop, Fundamental solutions for the collocation method in planar elastostatics, Applied Mathematical Modelling, 6, 390-393, 1982. 1.69.D. Redekop and J.C. Thompson, Use of the fundamental solutions in the collocation method in axisymmetric elastostatics, Computers & Structures, 17(4), 485-490, 1983. 1.70.A. Poullikkas, A. Karageorghis and G. Georgiou, The method of fundamental solutions for three-dimensional elastostatics problems, Computers & Structures, 80, 365-370, 2002. 1.71.G.S.A. Fam and Y.F. Rashed, The method of fundamental solutions applied to 3D structures with body forces using particular solutions, Computational Mechanics, 36, 245-254, 2005. 1.72.L. Marin and D. Lesnic, The method of fundamental solutions for the Cauchy problem in two-dimensional linear elasticity, International Journal of Solids and Structures, 41, 3425-3438, 2004. 1.73.L. Marin and D. Lesnic, The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations, Computers and Structures, 83, 267-278, 2005. 1.74.A. Poullikkas, A. Karageorghis and G. Georgiou, The method of fundamental solutions for Signorini problems, IMA Journal of Numerical Analysis, 18, 273-285, 1998. 1.75.A. Poullikkas, A. Karageorghis and G. Georgiou, The numerical solution of three-dimensional Signorini problems with the method of fundamental solutions, Engineering Analysis with Boundary Elements, 25, 221-227, 2001. 1.76.R.L. Johnston and R. Mathon, The computation of electric dipole fields in conducting media, International Journal for Numerical Methods in Engineering, 14, 1739-1760, 1979. 1.77.E. Palmisano, P.A. Ramachandran, K. Balakrishnan and M. Al-Dahhan, Computation of effectiveness factors for partially wetted catalyst pellets using the method of fundamental solution, Computers and Chemical Engineering, 27, 1431-1444, 2003. 1.78.P.A. Ramachandran, Method of fundamental solutions: singular value decomposition analysis, Communications in Numerical Methods in Engineering, 18, 789-801, 2002. 1.79.I.G. Currie, Fundamental Mechanics of Fluids, McGraw-Hill, New York, 1993. 1.80.J. Douglas and T.F. Russell, Numerical methods for convection-dominated diffusion problems based combining the method of characteristics with finite element or finite difference procedures, SIAM Journal on Numerical Analysis, 19(5), 871-885, 1982. 1.81.A. Allievi and R. Bermejo, Finite element modified method of characteristics for the Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 32, 439-464, 2000. 1.82.D.L. Young, Y.F. Wang and T.I. Eldho, Solution of the advection-diffusion equation using the Eulerian-Lagrangian boundary element method, Engineering Analysis with Boundary Elements, 24, 449-457, 2000. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35787 | - |
dc.description.abstract | 在本論文中,採用尤拉-拉格朗日基本解方法分析對流-擴散方程式、柏格斯方程式以及奈維爾-史托克斯方程式。尤拉-拉格朗日基本解方法是由尤拉-拉格朗日法以及基本解方法所組成,因此兼具兩種方法的優點。利用尤拉-拉格朗日法將具有對流項之非線性偏微分方程式轉換成線性偏微分方程式,接著再以基本解方法求解轉換後之線性偏微分方程式。在基本解方法中,將數值解表示為非穩態基本解的累加,因此可以保持無需網格以及數值積分的優點。
在開始時,將尤拉-拉格朗日基本解方法用來分析一維至三維的對流-擴散方程式,並且將數值解與解析解做比較,均可以得到非常好的結果。再來將尤拉-拉格朗日基本解方法應用在求解多維度的柏格斯方程式,在求解過程中未知變數會自然的分離,所以計算的效率會大為提高。接著將基本解方法與非穩態史托克斯例加以合併,用以求解非穩態的史托克斯方程式。將此數值方法應用在非規則形狀的計算域上,更能呈現此數值方法的種種優點。最後將尤拉-拉格朗日基本解方法與非穩態史托克斯例合併,用以求解奈維爾-史托克斯方程式。在此求解過程中只需要速度的邊界以及初始條件,可以避免傳統數值方法面臨的壓力邊界條件的問題。在本文中提出的尤拉-拉格朗日基本解方法的穩定性與一致性可以經由上述一連串數值實驗加以驗證。因此在分析對流-擴散方程式、柏格斯方程式以及奈維爾-史托克斯方程式時,所提出之尤拉-拉格朗日基本解方法,可以視為一種簡單並有效率之數值計算方法。 | zh_TW |
dc.description.abstract | The Eulerian-Lagrangian method of fundamental solutions (ELMFS), which is a combination of the method of fundamental solutions (MFS) and the Eulerian-Lagrangian method (ELM), is proposed in this thesis to deal with the advection-diffusion, Burgers’ and Navier-Stokes equations. The ELM is adopted to convert the non-linear partial differential equations including the convective terms to the linear time-dependent partial differential equations and then the resultant partial differential equations are solved by the MFS based on the time-dependent fundamental solution.
Initially, the proposed ELMFS is used to analyze 1D, 2D and 3D advection-diffusion equations which describe transport phenomena. The results of advection-diffusion equations are almost identical with the analytical solutions and other numerical results. Then the ELMFS is adopted to study the solutions of the multi-dimensional Burgers’ equations. During the solution procedures, the unknowns in the partial differential equations are decoupled in order to improve the efficiency of the simulation. Furthermore, the time-dependent MFS and the unsteady Stokeslets are combined together to solve the unsteady Stokes problems. The flexibility and the robustness of the MFS are demonstrated by solving the unsteady Stokes problems in irregular domains as well. Finally, the ELMFS based on the unsteady Stokeslets is adopted to analyze the Navier-Stokes equations in primitive-variable form. The stability and the consistency of the proposed ELMFS are examined in a series of numerical experiments, which demonstrate that the ELMFS can be considered as a simple and efficient numerical method in handling the nonlinear partial differential equations with convective terms. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T07:10:07Z (GMT). No. of bitstreams: 1 ntu-94-D91521006-1.pdf: 4326122 bytes, checksum: bb8653df9e1a0a02132babd54e2fa1dc (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1
1.1Mesh-dependent numerical schemes 2 1.2Mesh-free methods 2 1.3The method of fundamental solutions 3 1.4The method of fundamental solutions for partial differential equations with convective term 5 1.5Objectives of the thesis 6 1.6Organization of the thesis 7 Chapter 2 The Eulerian-Lagrangian Method of Fundamental Solutions for Advection-diffusion Equation 20 2.1 Introduction 21 2.2 Governing equation 23 2.3 Numerical method 23 2.4 Results and discussions 26 2.5 Conclusions 36 Chapter 3 The Eulerian-Lagrangian Method of Fundamental Solutions for Burgers’ Equations 56 3.1 Introduction 57 3.2 Governing equations 59 3.3 Numerical method 60 3.4 Numerical results 64 3.5 Conclusions 69 Chapter 4 The Method of Fundamental Solutions for Unsteady Stokes Problems 98 4.1 Introduction 99 4.2 Governing equations and unsteady Stokeslets 100 4.3 MFS formulations 104 4.4 Results and discussions 106 4.5 Conclusions 109 Chapter 5 The Eulerian-Lagrangian Method of Fundamental Solutions for Navier-Stokes Equations 125 5.1 Introduction 126 5.2 Governing equations and unsteady Stokeslets 128 5.3 Numerical method 130 5.4 Numerical results and comparisons 132 5.5 Conclusions 135 Chapter 6 Conclusions and Suggestions 149 6.1 Conclusions 150 6.2 Scope for further research 151 Appendix A The Method of Fundamental Solutions and Domain Decomposition Method for Degenerate Seepage Flownet Problems 154 A.1 Introduction 155 A.2 Governing equations 157 A.3 Numerical method 158 A.4 Results and discussions 162 A.5 Conclusions 165 | |
dc.language.iso | en | |
dc.title | 以基本解方法求解對流-擴散、柏格斯及奈維爾-史托克斯方程式 | zh_TW |
dc.title | The Method of Fundamental Solutions for Advection-diffusion, Burgers’ and Navier-Stokes Equations | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 盧衍祺,洪宏基,卡艾瑋,廖清標,黃榮山,蔡加正 | |
dc.subject.keyword | 尤拉-拉格朗日基本解方法,對流-擴散方程式,柏格斯方程式,奈維爾-史托克斯方程式,非穩態史托克斯例,對流項,無網格數值方法, | zh_TW |
dc.subject.keyword | Eulerian-Lagrangian method of fundamental solutions,advection-diffusion equation,Navier-Stokes equations,unsteady Stokeslets,convective terms,meshless numerical method, | en |
dc.relation.page | 177 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 4.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。