請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35761完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 任立中 | |
| dc.contributor.author | Hsin-Liang Chen | en |
| dc.contributor.author | 陳信良 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:08:46Z | - |
| dc.date.available | 2005-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | 一、 中文部分
1. Arthur M. Hughes著(張倩茜譯)(2001),資料庫行銷實用策略,美商麥格羅希爾公司。 2. 王仕茹(1999),整合層級貝氏聯合區隔與定位分析模式:來源國效應評價、品牌權益衡量與新產品設計之應用,國立台灣大學國際企業學研究所博士論文。 3. 李章偉(2001),資料庫行銷之顧客價值分析:以3C流通業為例,國立台灣大學國際企業學研究所碩士論文。 4. 宋家寬(2003),應用貝氏模式、馬可夫鏈於顧客移轉模型之分析,國立台灣大學國際企業學研究所碩士論文。 5. 林慧晶(1997),資料庫行銷之顧客價值分析與行銷策略應用,國立台灣大學國際企業學研究所碩士論文。 6. 陳成業(2002),資料庫行銷之品牌選擇模式研究,國立台灣大學國際企業學研究所碩士論文。 7. 陳靜怡(2005),購買量與購買時程雙變量之預測—層級貝氏潛藏行為模型之建構,國立台灣大學國際企業學研究所博士論文。 8. 曾瑾瑜(2003),資料庫行銷之顧客購買金額與顧客購買期間之相依分析,國立台灣大學國際企業學研究所碩士論文。 9. 楊昌憲(2002),資料庫行銷之新產品推薦系統:以3C家電業為例,國立台灣大學國際企業學研究所碩士論文。 10. 劉穎壽(1994),資料庫行銷:顧客資料庫的建立及其應用之研究,國立政治大學企業管理研究所碩士論文。 二、 英文部分 1. Aaker, D. A., V. Kumar and G. S. Day (2001), Marketing Research, NY: John Wiley & Sons, Inc., 7th. 2. Allenby, Greg M., Robert P. Leone, and Lichung Jen (1999), “A Dynamic Model of Purchase Timing With Application to Direct Marketing,”Journal of the American Statistical Association, Vol.94, No.446, pp.365-373. 3. Armstrong and Kotler (2000), Marketing: An Introduction, NJ: Prentice Hall. 4. Bagozzi, R. P. (1995), “Reflections on Relationship Marketing in Consumer Market,” Journal of the Academy of Marketing Science, Vol.23, No.4, pp.272-277. 5. Belk, Leland L. and Stephen L. Buzby(1973), “Profitability Analysis by Market Segments,” Journal of Marketing, Vol.37, pp.48-53. 6. Berger P.D. and N.I. Nasr (1998), “Customer Lifetime Value: Marketing Models and Applications,” Journal of Interactive Marketing, Vol.12, pp.17-30. 7. Bitner, M. J. (1995), “Building Service Relationships: It’s All About Promises,” Journal of the Academy of Marketing Science, Vol.23, Iss.4, pp.246-252 8. Cespedes, F. V. and J. H. Smith (1993), “Database Marketing: New Rules for Policy and Practice,” Sloan Management Review, Vol.34, No.4, pp.7-35. 9. Chiang, Jeongwen (1991), “A Simultaneous Approach to The Whether, What and How Much to Buy Questions,” Marketing Science, Vol. 10, No.4, Fall, 297-315. 10. Chintagunta, Pradeep K. (1993), “Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households,” Marketing Science, Vol. 12, No. 2, pp.184-208. 11. Dickson, P. R. and J. L. Ginter (1987), “Market Segmentation, Product Differentiation and Marketing Strategy,” Journal of Marketing, Vol.5, No.2, pp.1-10. 12. Dwyar F.R. (1989), “Customer Lifetime Profitability to Support Marketing Decision Making,” Journal of Direct Marketing, Vol.3, pp.8-15. 13. Goodman, John (1992), “Retail/Database: Leveraging the Customer Database to Your Competitive Advantage,” Direct Marketing, Vol.55, Iss.8, pp.26-28. 14. Greenberg, M. and S. S. McDonald (1989), “Successful Needs/Benefits Segmentation: A User’s Guide,” Journal of Consumer Research, Vol.6, No.3, pp.29-36. 15. Greene, William H. (2003), Econometric Analysis, Pearson Education, Inc., 5th. 16. Gronroos, Christian (1995), “Relationship Marketing: The Strategy Continuum,” Journal of the Academy of Marketing Science, Vol.23, No.4, pp.252-254. 17. Gronroos, Christian (1996), “Relationship Marketing: Strategic and Tactical Implications,” Management Decision, Vol.34, No.3, pp.5-14. 18. Guadagni, Peter M. and John D. C. Little (1983), “A Logit Model of Brand Choice Calibrated on Scanner Data,” Marketing Science, Vol.2, No.3, pp.203-238. 19. Gupta, Sunil (1991), “Stochastic Models of Interpurchase Time With Time-Dependent Covariates,” Journal of Marketing Research, Vol. 28, February, 1-15. 20. Haley, R. I. (1968), “Benefit Segmentation: A Decision-Oriented Research Tool,” Journal of Marketing, Vol.32, No.2, pp.30-35. 21. Hughes (1994), Strategic Database Marketing, Mc Graw-Hill Publishing Company Inc., 2nd. 22. Jen, Lichung and Shih-Ju Wang (1998), “Incorporating Heterogeneity in Customer Valuation: An Empirical Study of Health Care Direct Marketing in Taiwan,” International Journal of Operations Quantitative Management, Vol.4, No.3, December, pp.217-228. 23. Jen, Lichung, Chien-Heng Chou and Greg M. Allenby (2003), “A Bayesian Approach to Modeling Purchase Frequency,” Marketing Letters, 14:1, pp.5-20. 24. Joseph, Anthony P., Conway Lackman, A. Graham Peace and Gerald Tatar (1999), “Leveraging Customer Database for Strategic Marketing Advantage in The Retail Industry,” Journal of Database Marketing, Vol.7, No.1, pp.53-59. 25. Kahan, Ron. (1998), “Using Database Marketng Techniques to Enhance Your Ont-to-One Marketing Initiatives,” Journal of Customer Marketing, Vol.15, No.5, pp.491-493. 26. Keane, T. and P. Wang (1995), “Applications for the Lifetime Value Model in Modern Newspaper Publishing,” Journal of Direct Marketing, Vol.9, pp.59-66. 27. Kotler, P. (1998), Marketing Management: Analysis, Planning, Implementation and Control, NJ: Prentice-Hall, Inc. 9th. 28. McCarthy, E. J. (1981), Basic Marketing: A Managerial Approach, Homewood, IL: Irwin, Inc., 7th. 29. Mehegan, S. (1995), “The Database Game,” Restaurant Business, Vol.94, No.13, pp.56. 30. Morgan, Robert M. and Shelby D. Hunt (1994), “The Commitment-Trust Theory of Relationship Marketing,” Journal of Marketing, Vol.58, July, pp.20-38. 31. Morrison, D.G. and D. C. Schmittlein (1988), “Generalizing the NBD Model for Customer Purchase: What Are the Implications and Is It Worth the Effort?” Journal of Business and Economic Statistics, Vol.6, No.2, pp.145-159. 32. Mulhern, Francis J. (1999), “Customer Profitability Analysis: Measurement, Concentration and Research Directions,” Journal of Interactive Marketing, Vol.13, pp.25-40. 33. Neslin, Scott A. and Linda G. Schneider Stone (1996), “Consumer Inventory Sensitivity and the Postpromotion Dip,” Marketing Letters, Vol.7, No.1, pp.77-94. 34. Perrien, J. and L. Richard (1995), “The Meaning of A Marketing Relationship: A Pilot Study,” Industrial Marketing Management, Vol.24, pp.37-43. 35. Peppers, Don and Martha Rogers (1993), The One to One Future: Building Relationships One Customer at A Time, NY: Doubleday. 36. Post, Carol (1997), “Finding Your Best Customers,” Target Marketing, Vol.20, No.8, pp.38-42. 37. Roberts, M. L. (1992), “Expanding the Role of the Direct Marketing Database,” Journal of Direct Marketing, Vol.6, pp.51-60. 38. Rossi, P.E. and Greg M. Allenby (2003), “Bayesian Statistics and Marketing,” Marketing Science, Vol. 22, No. 3, pp.304-328. 39. Schmittlein, David C. and Robert A. Peterson (1994), “Customer Base Analysis: An Industrial Purchase Process Application,” Marketing Science, Vol.13, No.1, pp.41-67. 40. Shani, David and Sujana Chalasani (1992), “Exploring Niches Using Relationship Marketing,” Journal of Services Marketing, Vol.6, No.4, pp.43-52. 41. Shaw, R. and M. Stone (1990), Database Marketing: Strategy and Implication, John Wiley & Sons Inc. 42. Sheth, Jagdish N. and Atul Parvatiyar (1995), “Relationship Marketing in Consumer Markets: Antecedents and Consequences,” Journal of the Academy of Marketing Science, Vol.23, No.4, pp255-271. 43. Smith, W. R. (1956), “Product Differentiation and Market Segmentation as alternative Marketing Strategies,” Journal of Marketing, Vol. 21, July, pp.3-8. 44. Stone, Bob (1995), Successful Direct Marketing Methods, Lincolnwood, IL:NTC Business Books, pp.37-59. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35761 | - |
| dc.description.abstract | 如何瞭解顧客的偏好結構,並準確預測顧客未來消費行為,一直是行銷人員孜孜不倦的方向。由於電腦設備的發展,龐大的資訊與強大的計算能力擴大了行銷人員瞭解消費者的能力。然而在消費者行為存在異質性的前提下,若繼續沿用傳統統計方法來描述消費者的行為,將往往面臨以下抉擇:以全體顧客資料推估總體平均行為,但忽略個別顧客之間的異質性;若僅依個別顧客資料推估個別顧客行為,則往往因資料量不足導致估計不具效率性的問題。
本研究在建立顧客購買期間的預測模型上,以一般化迦瑪分配為模型建立的基礎,搭配顧客行為異質性服從反一般化迦瑪分配的設定。如此,不但能夠增加模型的適用彈性,提高模型描述顧客行為的準確度,更能夠反映消費者行為的異質性與不穩定性。並且,搭配顧客人口統計變數,建立一個能夠預測新進顧客消費行為的層級貝氏模型。最後,本研究以貝氏統計方法推估模型中的個人化參數,由於貝氏統計方法結合了先驗訊息與樣本訊息,因此所得的後驗估計具有自動調節的機制,可以處理資料量不足顧客之參數不具效率性的問題,避免上述異質性與估計效率性之間的抉擇窘境。 本研究為了驗證此層級貝氏模型的預測能力,將以國內某油品領導廠商的實際資料帶入模型,用以比較不同參數估計方法間的優劣。並且在最後,將列出本研究的發現、研究進行時所遭遇的限制,以及未來的研究方向。 | zh_TW |
| dc.description.abstract | Marketing researchers are always striving for how to identify the customers’ preference structure, and how to predict the customers’ purchase behavior precisely. Due to technology development, the enormous amount of information storage and the ability of data computation enable the researchers to further comprehend the purchases and preferences of consumers more directly. However, on the premise that heterogeneity is existed, if we still continuously use the traditional statistics methods to characterize the consumers’ behavior, then we always face a trade-off: while estimating the behavior of consumers, if based on the information of whole customers, then we may ignore the heterogeneity between them; or if solely based on identical customer, then the estimation may lack efficiency because of insufficient data amount.
We construct a prediction model of customer inter-purchase times based on the generalized gamma distribution, which can make the model fit the data more flexible than the other distributions. We also assume the heterogeneity of customer behavior follow the inverse generalized gamma distribution, so that the difference and the instability of consumer behavior between each customer can be reflected clearly. Additionally, our model is formulated with a hierarchical Bayesian framework with demographic variables, which can predict the behavior of new customers without gathering any purchasing information. At last, we estimate the parameters of the model by Bayesian statistics. Because of the integration of prior and sample information, Bayesian statistics can provide individualized estimation of parameters for each customer and also ensure both the heterogeneity of customers and efficiency of parameter estimating at the same time. In order to verify the prediction capability of this hierarchical Bayesian model, the purchase records of a domestic leading petroleum company will be employed in the model and also list the pros and cons with different parameters estimated. Finally, we draw a conclusion, indicate the limitation of this investigation, and suggest the direction to be studied on possible future work. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:08:46Z (GMT). No. of bitstreams: 1 ntu-94-R92724013-1.pdf: 551891 bytes, checksum: c876aa48965c69b665d56c4a27c0bcd6 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 第一章 緒論 1
第一節 研究背景與動機 1 第二節 研究問題 3 第三節 研究目的 4 第四節 研究架構 5 第二章 文獻探討 6 第一節 市場區隔 6 第二節 關係行銷與資料庫行銷 11 第三節 衡量顧客價值 17 第三章 研究方法 22 第一節 貝氏統計 22 第二節 MCMC方法 29 第三節 一般化迦瑪分配 33 第四節 模型建立 44 第五節 配適度指標與參數檢定方法 53 第四章 實証分析 55 第一節 樣本結構概述 55 第二節 模型設定與參數估計 61 第三節 樣本預測結果 66 第四節 人口統計變數區隔下之購買行為特性 71 第五章 結論與建議 75 第一節 研究發現 75 第二節 行銷管理意涵 76 第三節 研究限制與未來研究方向 77 參考文獻 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 購買期間 | zh_TW |
| dc.subject | 一般化迦瑪分配 | zh_TW |
| dc.subject | 層級貝氏模型 | zh_TW |
| dc.subject | Inter-purchase Time | en |
| dc.subject | Hierarchical Bayesian Model | en |
| dc.subject | Generalized Gamma Distribution | en |
| dc.title | 以層級貝氏統計方法建構一般化迦瑪分配購買期間預測模型 | zh_TW |
| dc.title | Constructing A Prediction Model of Inter-purchase Time with Generalized Gamma Distribution by Hierarchical Bayesian Statistics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳厚銘,周建亨 | |
| dc.subject.keyword | 一般化迦瑪分配,層級貝氏模型,購買期間, | zh_TW |
| dc.subject.keyword | Generalized Gamma Distribution,Hierarchical Bayesian Model,Inter-purchase Time, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-27 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 國際企業學研究所 | zh_TW |
| 顯示於系所單位: | 國際企業學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 538.96 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
