Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35728
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許博文(Powen Hsu)
dc.contributor.authorHsin-Yi Leeen
dc.contributor.author李信毅zh_TW
dc.date.accessioned2021-06-13T07:07:02Z-
dc.date.available2013-07-27
dc.date.copyright2011-07-27
dc.date.issued2011
dc.date.submitted2011-07-22
dc.identifier.citation[1] H. A. Wheeler, “Fundamental limitations of small antennas,” Proc. IRE, vol. 35, pp. 1479–1484, Dec. 1947.
[2] L. J. Chu, “Physical limitations of omni-directional antennas,” J. Appl. Phys., vol. 19, pp. 1163–1175, Dec. 1948.
[3] R. F. Harrington, “Effect of antenna size on gain, bandwidth, and efficiency,” J. Res. Nat. Bur. Stand., vol. 64D, pp. 1–12, 1960
[4] R. E. Collin, “Small antennas,” IEEE Trans. Antennas Propagat., vol. AP-12, pp. 23–27, Jan. 1964.
[5] H. Y. Wang, I. Simkin, C. Emson, and M. J. Lancester, “Compact meander slot antennas,” Microwave and Opt. Technol. Lett., vol. 24 , pp.377-380, Mar. 2000.
[6] S.-Y. Chen and P. Hsu, “CPW-fed folded-slot antenna for 5.8 GHz RFID tags,” Electron. Lett., vol. 40, no. 24, pp. 1516-1517, Nov. 2004.
[7] S. Y. Chen, I. C. Lan, and P. Hsu, “In-Line Series-Feed Collinear Slot Array Fed by a Coplanar Waveguide,” IEEE Trans. Antennas Propag., vol. 55, no. 6, pp. 1739–1744, Jun. 2007.
[8] C. -H. Ko, M. -J. Chiang, and J. -Y. Sze, “Miniaturized planar annular slot antenna design utilizing shorting conducting strip,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1360-1363, 2009.
[9] N. Behdad, and K. Sarabandi, “Bandwidth enhancement and further size reduction of a class of miniaturized slot antennas,” IEEE Trans. Antennas Propag., vol. 52, no.8, pp. 1928-1935, Aug. 2004.
[10] Y. S. Wang and S. J. Chung, “A short open-end slot antenna with equivalent circuit analysis,” IEEE Trans. Antennas and Propag., vol. 58, pp. 1771-1775, May 2010.
[11] B. Ghosh, S.M. Haque., D. Mitra, and S. Ghosh, “A loop loading technique for the miniaturization of non-planar and planar antennas,” IEEE Trans. Antennas Propagat., vol. 58, no. 6, pp. 2116-2121, June. 2010.
[12] K. Sarabandi, and R. Azadegan, “Design of an efficient UHF planar antenna,” IEEE Trans. Antennas Propag, vol. 51, pp. 1270-1276, Jun. 2003.
[13] S. Y. Chen, Chun-Wei Tseng, S. C. Chiu, and P. Hsu, “Frequency-agile, miniaturized slot antenna for hand-held devices,” Electromagnetic Theory (EMTS), 2010 URSI Int. Symp., pp. 377–380, Aug. 2010.
[14] W. H. Tu and Kai Chang, “Miniaturized CPW-fed slot antenna using stepped impedance resonator,” in IEEE AP-S Int. Symp. Dig., pp. 351-354, 2005.
[15] W. H. Tu, “Compact harmonic-suppressed coplanar waveguide-fed inductively coupled slot Antenna,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 543-545, 2008.
[16] K. C. Chi, S. Y. Chen, P. Hsu, “Miniaturization of slot loop antenna using split-ring resonators,” in Proc. IEEE AP-S. Int. Symp., Jun. 1-5, 2009, pp.1–4.
[17] S. C. Chiu, S. Y. Chen, and P. Hsu, “Miniaturized Composite Right/Left-Handed Coplanar Waveguide Antenna for Dual-Frequency Operation,” IEEE Radio and Wireless Symposium RWS’09, pp. 139-142, Jan. 2009.
[18] T. K. Lo, C. O. Ho, Y. Hwang, E. K. W. Lam, and B. Lee, ”Miniature aperture-coupled microstrip antenna of very high permittivity,” Electron. Lett., vol. 33, pp. 9-10, Jan. 1997.
[19] P. -L. Chi, K. Leong, R. Waterhouse, and T. Itoh, “A miniaturized CPW-fed capacitor-loaded slot-loop antenna,” in IEEE ISSSE Int. Symp., July 30- August 2, 2007, pp. 595-598.
[20] P. -L. Chi, R. Waterhouse, and T. Itoh, “Antenna miniaturization using slow wave enhancement factor from loaded transmission line models,” IEEE Trans. Antennas Propag., vol. 59, pp. 48-57, Jan. 2011.
[21] R. H. Chen and Y.-C. Lin, “An inductive-loaded slot antenna using C-shaped rings for size reduction,” in Proc. IEEE AP-S Int. Symp., Jul. 11–17, 2010, pp. 1–4.
[22] R. H. Chen and Y.-C. Lin, “Miniaturized design of microstrip-fed slot antennas loaded with C-shaped rings,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 203, 2011.
[23] R. S. Elliott, Antenna Theory and Design, Revised edition, John Wiley, New Jersey, 2003.
[24] D. M. Pozar, Microwave Engineering, 3nd ed. New York:Wiley, 2005, pp. 187.
[25] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 15, pp. 483–490, Aug. 1992.
[26] S. Wang, H. S. Wu and C.-K. C. Tzuang, 'Propagation characteristics of wide synthetic quasi-TEM transmission line,' in IEEE MTT-S Int. Microwave Symp. Dig., Lone Beach, CA, June 2005.
[27] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines. Norwood, MA: Artech House, 1996, pp. 285.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35728-
dc.description.abstract本論文提出了一種槽孔型天線之簡易微型化方法。藉由負載一對L形金屬殘段於槽孔天線之適當位置,槽孔上之電流路徑及其等效並聯電容皆能因此增加,進而使槽孔之等效長度上升。
四種不同種形式之槽孔型天線,包括:共面波導饋入之電容式、電感式槽孔偶極天線及微帶線饋入之槽孔偶極、單極天線,均可運用上述方法分別成功地縮小各自之尺寸約47.2%, 53.8%, 46.2%,及 46.7%。此外,更顯著之微型化效果只需於L形殘斷之輸入端加上一集總電感即可達成。但無庸置疑的,天線之增益及其頻寬都會有更明顯的降低。
以上所有提出之設計理論及天線架構之模擬與實驗驗證,於本論文中都會加以仔細地探討。
zh_TW
dc.description.abstractA simple method for slot antenna miniaturization is proposed. By loading the L-shaped metal stub inside the slot antenna at proper position, both the electric current path and the effective shunt capacitance of the slot are increased and thus the slot, or the antenna effective length can be lengthened.
Using this method, four kinds of slot antennas including capacitively and inductively CPW-fed slot dipole antennas, microstrip-fed slot dipole, and slot monopole antenna can achieve the size reductions of about 47.2%, 53.8%, 46.2%, and 46.7%, respectively. Moreover, further miniaturization can be simply done by placing a lumped inductor at the input of the L-shaped stub, however more degradations on the antenna gain and bandwidth are its drawbacks.
All of the operating mechanism and details of the antenna design are discussed. Experimental and simulated results of the antenna characteristics are both presented and discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:07:02Z (GMT). No. of bitstreams: 1
ntu-100-R98942009-1.pdf: 6699736 bytes, checksum: a30c3834bdee2579a674b2625b49eb2d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 iii
誌謝 v
中文摘要 vii
Abstract ix
Contents xi
List of Figures xiii
List of Tables xviii
Chapter 1 Introduction 1
1.1 Motivation and literature survey 1
1.2 Chapter outlines 2
Chapter 2 Slow Wave Mechanism Investigation 4
2.1 Characteristics of slow wave [19], [23] 4
2.2 Transmission parameters extraction and validity checks 5
2.3 Analyses of L-shaped stub loaded slotline 7
Chapter 3 Miniaturized Slot Dipole Antenna Fed by CPW 21
3.1 Capacitively-coupled slot antenna design 21
3.2 Parametric study 23
3.3 Inductively-coupled slot antenna design 24
Chapter 4 Miniaturized Slot Antenna Fed by Microstrip Line 48
4.1 Half-wavelength slot antenna design 48
4.2 Quarter-wavelength slot antenna design 49
Chapter 5 Further Size Reduction of the Miniaturized Slot Antenna 69
5.1 Antenna geometry and design 69
5.2 Experimental and simulation results 70
Chapter 6 Conclusion 82
Reference 83
List of Figures
Fig. 2.1. diagram. 4
Fig. 2.2. Transmission line section. 5
Fig. 2.3. SWF comparisons between the simulation and the closed-form expressions. 10
Fig. 2.4. comparisons between the simulation and the closed-form expressions. 11
Fig. 2.5. Geometry of the L-shaped stub loaded slotline. 12
Fig. 2.6. Simulated SWFs of the stub-loaded slotline with various . 13
Fig. 2.7. Simulated characteristic impedances of the stub-loaded slotline with various . 14
Fig. 2.8. Simulated SWFs of the stub-loaded slotline with various . 15
Fig. 2.9. Simulated characteristic impedances of the stub-loaded slotline with various . 16
Fig. 2.10. Simulated SWFs of the stub-loaded slotline with various W. 17
Fig. 2.11. Simulated characteristic impedances of the stub-loaded slotline with various W. 18
Fig. 2.12. Equivalent circuit of the L-shaped stub. 19
Fig. 2.13. Un-normalized S-parameters of the structure. 20
Fig. 3.1. Geometry of the capacitively CPW-fed slot dipole antenna. 26
Fig. 3.2. Measured and simulated input reflection coefficients of the capacitive slot dipole antenna. 27
Fig. 3.3. Geometry of the miniaturized capacitvely slot dipole antenna. 28
Fig. 3.4. Measured and simulated input reflection coefficients of the miniaturized capacitvely slot dipole antenna. 29
Fig. 3.5. Simulated input reflection coefficients of the prototype antenna and the inverted L-stub loaded antenna. 30
Fig. 3.6(b). Measured and simulated H-plane radiation patterns of the capacitive slot dipole antenna at resonance frequency. 32
Fig. 3.7(a). Measured and simulated E-plane radiation patterns of the miniaturized capacitive slot dipole antenna at resonance frequency. 33
Fig. 3.7(b). Measured and simulated H-plane radiation patterns of the miniaturized capacitive slot dipole antenna at resonance frequency. 34
Fig. 3.8. Simulated input reflection coefficients of the miniaturized capacitive slot dipole antenna with various . 35
Fig. 3.9. Simulated input reflection coefficients of the miniaturized capacitive slot dipole antenna with various . 36
Fig. 3.10 Simulated input reflection coefficients of the miniaturized capacitive slot dipole antenna with various . 37
Fig. 3.11. Simulated instantaneous electric current distributions on the miniaturized capacitive slot dipole antenna. 38
Fig. 3.13. Measured and simulated input reflection coefficients of the inductively slot dipole antenna. 40
Fig. 3.14. Geometry of the miniaturized inductively slot dipole antenna. 41
Fig. 3.15. Simulated input reflection coefficients of the miniaturized inductively slot dipole antenna with various d. 42
Fig. 3.16. Measured and simulated input reflection coefficients of the miniaturized inductively slot dipole antenna with various and W. 43
Fig. 3.17 (a). Measured and simulated E-plane radiation patterns of the inductively slot dipole antenna at resonance frequency. 44
Fig. 3.17 (b). Measured and simulated H-plane radiation patterns of the inductively slot dipole antenna at resonance frequency. 45
Fig. 3.18 (a). Measured and simulated E-plane radiation patterns of the miniaturized inductively slot dipole antenna at resonance frequency. 46
Fig. 3.18 (b). Measured and simulated H-plane radiation patterns of the miniaturized inductively slot dipole antenna at resonance frequency. 47
Fig. 4.1. Geometry of the microstrip-fed slot dipole antenna. 51
Fig. 4.2. Measured and simulated input reflection coefficients of the microstrip-fed slot dipole antenna. 52
Fig. 4.3. Geometry of the miniaturized slot dipole antenna. 53
Fig. 4.4. Simulated input reflection coefficients of the miniaturized slot dipole antenna with various d. 54
Fig. 4.5. Measured and simulated input reflection coefficients of the miniaturized slot dipole antenna. 55
Fig. 4.6(a). Measured and simulated E-plane radiation patterns of the microstrip-fed slot dipole antenna at resonance frequency. 56
Fig. 4.6(b). Measured and simulated H-plane radiation patterns of the microstrip-fed slot dipole antenna at resonance frequency. 57
Fig. 4.7(a). Measured and simulated E-plane radiation patterns of the miniaturized slot dipole antenna at resonance frequency. 58
Fig. 4.7(b). Measured and simulated H-plane radiation patterns of the miniaturized slot dipole antenna at resonance frequency. 59
Fig. 4.9. Measured and simulated input reflection coefficients of the microstrip-fed slot monopole antenna. 61
Fig. 4.10. Geometry of the miniaturized slot monopole antenna. 62
Fig. 4.11. Detail geometry of the miniaturized slot monopole antenna. 63
Fig. 4.12. Measured and simulated input reflection coefficients of the miniaturized slot monopole antenna. 64
Fig. 4.13(a). Measured and simulated E-plane radiation patterns of the microsrip-fed slot monopole antenna at resonance frequency. 65
Fig. 4.13(b). Measured and simulated H-plane radiation patterns of the microsrip-fed slot monopole antenna at resonance frequency. 66
Fig. 4.14(a). Measured and simulated E-plane radiation patterns of the miniaturized slot monopole antenna at resonance frequency. 67
Fig. 4.14(b). Measured and simulated H-plane radiation patterns of the miniaturized slot monopole antenna at resonance frequency. 68
Fig. 5.1. Geometry of the inductor/capacitor-loaded miniaturized capacitively CPW-fed slot dipole antenna. 72
Fig. 5.2. Simulated input reflection coefficients of the inductor-loaded miniaturized capacitive slot dipole antenna with various inductances. 73
Fig. 5.3. Simulated input reflection coefficients of the capacitor-loaded miniaturized capacitive slot dipole antenna with various capacitances. 74
Fig. 5.4. Geometry of the inductor-loaded miniaturized slot monopole antenna. 75
Fig. 5.5. Measured and simulated input reflection coefficients of the inductor-loaded miniaturized slot dipole antenna. 76
Fig. 5.6. Measured and simulated input reflection coefficients of the inductor-loaded miniaturized slot monopole antenna. 77
Fig. 5.6(a). Measured and simulated E-plane radiation patterns of the inductor-loaded slot dipole antenna at resonance frequency. 78
Fig. 5.6(b). Measured and simulated H-plane radiation patterns of the inductor-loaded slot dipole antenna at resonance frequency. 79
Fig. 5.7(a). Measured and simulated E-plane radiation patterns of the inductor-loaded slot monopole antenna at resonance frequency. 80
Fig. 5.7(b). Measured and simulated H-plane radiation patterns of the inductor-loaded slot monopole antenna at resonance frequency. 81
List of Tables
Table 2.1. Detail parameters for the L-shaped stub loaded slotline (Unit:mm). 12
Table 3.1. Design parameters for the miniaturized capacitvely slot dipole antenna (Unit:mm). 28
Table 3.2. Comparisons between the simulated size reduction and SWF increasement with various . 35
Table 3.3. Comparisons between the simulated size reduction and SWF increasement with various . 36
Table 3.4. Design parameters for the miniaturized inductively slot dipole antenna (Unit:mm). 41
Table 4.1. Design parameters for the miniaturized slot dipole antenna (Unit:mm). 53
Table 4.2. Design parameters for the miniaturized slot monopole antenna (Unit:mm). 63
dc.language.isoen
dc.title槽孔天線之簡易微型化方法zh_TW
dc.titleA Simple Method for Miniaturizing the Slot Antennaen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張道治(Dau-Chyrh Chang),張知難(The-Nan Chang),馬自莊(Tzyh-Ghuang Ma),陳士元(Shih-Yuan Chen)
dc.subject.keyword微型化天線,槽孔型天線,共面波導,微帶線,zh_TW
dc.subject.keywordMiniaturized antennas,slot antennas,coplanar waveguides,microstrip lines,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2011-07-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
6.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved