請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35698完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳誠亮 | |
| dc.contributor.author | Ching-Zhong Ou | en |
| dc.contributor.author | 歐慶忠 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:05:29Z | - |
| dc.date.available | 2005-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-27 | |
| dc.identifier.citation | [1] Bagajewicz, M., and Manousiouthakis, V. “Mass/heat exchange network representation of distillation networks,” AIChE, vol. 38, p. 1769, 1992.
[2] Bagajewicz, M., Pham, R., and Manousiouthakis, V. “On the state space approach to mass/heat exchanger network design,” Chem. Eng. Sci., vol. 53, p. 2595, 1998. [3] Brooke, A., Kendrick. D., Meeraus, A., Raman, R., and Rosenthal, R. E. GMAS : A User’s Guide, GAMS Development Corporation, 1988. [4] Chang, C. T. and Li, B. H. “Inproved optimization strategies for generating practical waterusage and -treatment network structures,” Ind. Eng. Chem. Res., vol. 44, p. 3607, 2005. [5] Douglas, J. “Process synthesis ofr waste minimization,” Ind. Eng. Chem. Res., vol. 31, p. 238, 1992. [6] Doyle, S. and Smith, R. “Targeting water reuse with multiple contaminants,” Trans. Inst. Chem. Eng, vol. 75, p. 181, 1997. [7] El-Halwagi, M. M. and Manousiouthakis, V. “Synthesis of mass-exchange networks,” AIChE, vol. 8, p. 1233, 1989. [8] El-Halwagi, M. M. and Manousiouthakis, V. “Automatic synthesis of mass-exchange networkswith single component targets,” Chem. Eng. Sci., vol. 9, p. 2813, 1990a. [9] El-Halwagi,M.M. and Manousiouthakis, V. “Simultaneous synthesis of mass-exchange and regeneration networks,” AIChE, vol. 36, p. 1209, 1990b. [10] El-Halwagi, M. M., El-Halwagi, A. M., and Manousiouthakis, V. “Optimal design of dephoenolization networks for petroleum-refinery wastes,” Trans. Ins. Chem. Eng. Part B, vol. 70, p. 131, 1992. [11] Feng, X., and Seider, W. “New structure and design methodology for water networks,” Ind. Eng. Chem. Res., vol. 40, p. 6140, 2001. [12] Galan, B. and Grossmann, L. “Optimal design of disturbuted wastewater treatment networks,” Ind. Eng. Chem. Res., vol. 37, p. 4038, 1998. [13] Gunarantam, M., Alva-Argaez, A., Kokossis, A., Kim, J.-K., and Smith, R. “Automated design of total water systems,” Ind. Eng. Chem. Res., vol. 44, p. 588, 2005. [14] Hallale, N. and Fraser, D. M. “Capical cost targets for mass exchange networks: a special case: water minimization,” Chem. Eng. Sci., vol. 53, p. 293, 1998. [15] Huang, C. H., Chang, C. T., Ling, H. C., and Chang, C. C. “A mathematical programming model for water usage and treatment network design,” Ind. Eng. Chem. Res., vol. 38, p. 2666, 1999. [16] Koppol, A. P.R., Bagajewicz, M., Dericks, B., and Savelski, M. “On zero water discharge solutions in the process industry,” Adv. in Env. Res., vol. 8, p. 151, 2003. [17] Kuo,W. and Smith, R. “Effluent treatment systemdesign,” Chem. Eng. Sci., vol. 52, p. 4273, 1997. [18] Kuo,W. and Smith, R. “Design of water-using systems involving regeneration,” Trans. Inst. Chem. Eng., vol. 76, p. 94, 1998. [19] Linnhoff, B. and Flower, J. “Synthesis of heat exchanger networks,” AIChE, vol. 24, p. 633, 1978. [20] Linnhoff, B. and Hindmarsh, E. “The pinch design method of heat exchanger networks,” Chem. Eng. Sci., vol. 38, p. 745, 1983. [21] Linnhoff, B. Mason, D., and Wardle, I. “Understanding heat exchanger networks,” Comp. Chem. Eng., vol. 3, p. 91, 1979. [22] Quesada, I., and Grossmann, L. E. “Global optimization of bilinear process networks with multicomponent flows,” Comp. Chem. Eng., vol. 19, p. 1219, 1995. [23] Savelski, M., and Bagajewicz, M. “On the optimal conditions of water utilization systems in process plants with single conatminant,” Chem. Eng. Sci., vol. 55, p. 5035, 2000. [24] Savelski, M., and Bagajewicz, M. “On the use of linear models for the design of water utilization systems in refineries and process plants,” Chem. Eng. Res. Des., vol. 79, p. 600, 2001. [25] Sikdar, S. K., and El-Halwagi, M. M. Process Design Tools for the Environment, Taylor and Francis, 2001. [26] Takama, N., Kuriyama, T., Shiroko, K., and Umeda, T. “Optimal water allocation in a petroleum refinery,” Comp. Chem. Eng., vol. 4, p. 251, 1980. [27] Tsai, M. j., and Chang, C. T. “Water usage and treatment network design using genetic algotithms,” Ind. Eng. Chem. Res., vol. 40, p. 4874, 2001. [28] Wang, B., Feng, X., and Zhang, Z. “Adesign methodology for multiple-contaminant water networks with single internal water main,” Comp. Chem. Eng., vol. 27, p. 903, 2003. [29] Wang, Y. and Smith, R. “Design of distributed effluent treatment system,” Chem. Eng. Sci., vol. 49, p. 3127, 1994. [30] Wang, Y. and Smith, R. “Wastewater minimization,” Chem. Eng. Sci., vol. 49, p. 981, 1994. [31] Manan, Z. A., Tan, Y. L., and Foo, D. C. Y. “Targeting the minum water flow rate using water cascade analysis technique,” Chem. Eng. Sci., vol. 49, p. 981, 1994. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35698 | - |
| dc.description.abstract | 本研究針對工廠用水網路設計提供了一個數學方法,同時考慮了
滿足所有製程用水單元需求的最適化水網路設計,以及最適化的污水排放。 另外,在水網路型態上,也將再生再利用和再生再循環利用水網路,兩者不同型態的水網路設計, 詳加說明,並利用兩個簡單的例子加以分辨其水網路型態的不同。 而這個以超結構為背景數學模式建構,包含了許多實際操作的限制式,例如 供應水流量限制,操作成本,污水處理成本,以及管線成本等等, 最後將產生一個混合整數非線性規劃的問題;為了求得最適化水網路設計結構與設計成本考量上的平衡 ,本研究提出了一個不同設計策略,分別對最適化供應水使用量的水網路設計,以及最適化總成本的水網路設計 做分析比較。最後以本研究所建立的數學模式,對三個不同目標需求的工廠製程做製程用水網路最適化模擬。 | zh_TW |
| dc.description.abstract | A mathematical programming approach for the water networks design
in any chemical plant is developed in this paper. This approach considers simultaneously the optimal water networks to satisfy water-using unit demands and optimal treatment of effluent streams. Concept of regeneration reuse and regeneration recycling water networks is explained and distinguished in this method. The based on superstructure mathematical programming approach, which includes many practical operating constraints, flowrate limitations of water supply, operating costs, treatment costs, and piping and sewer costs, will result in a mixed-integer nonlinear programming problem. Complex trade-off involving optimal water networks design structure, as well as design costs has been included in this MINLP problem. Therefore, a different design strategy is presented in this study, and there are analytic comparisons between final water-using network designs for optimal water supply flowrates and optimal total annual cost. Furthermore, three water-using processes having different design objectives are used to demonstrate this approach. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:05:29Z (GMT). No. of bitstreams: 1 ntu-94-R92524044-1.pdf: 1226965 bytes, checksum: acade323719a6b965981f215721c06ff (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目錄
1. 緒論 1 1.1. 前言 1 1.2. 整合性水網路設計之發展與型態說明 2 1.3. 文獻回顧 5 1.4. 研究動機與目的 6 1.5. 組織章節 8 2.製程用水網路最適化之模式建構 9 2.1. 模式建立之背景說明 9 2.2. 模式建立之基本假設說明 10 2.3. 模式建立之圖解說明 12 2.4. 模式之符號、集合、系統參數與系統變數 14 2.4.1 指標符號說明 14 2.4.2 集合說明 14 2.4.3 系統參數 15 2.4.4 系統變數 16 2.5. 限制式 19 2.5.1 流量平衡與溶質平衡 19 2.5.2 單元型態說明,與單元中的水損失、單元出口濃度限制 23 2.5.3 系統對外排放濃度 24 2.5.4 物流流量之上限與下限 25 2.5.5 管線選擇 25 2.5.6 最大可允許的管線數目 26 2.5.7 再生再循環水流的排除 27 2.5.8 成本函數 28 2.6. 目標函數 30 2.5.8 目標函數(1):最少的供應水流量 30 2.5.8 目標函數(2):最低的整體設計成本 31 2.5.8 目標函數(3):最少的管線連接數目 32 2.7. 設計策略 33 3. 模式之情境模擬暨模擬結果分析與討論(一) 35 3.1. 最適化軟體 36 3.2. 例一之情境模擬 36 3.2.1例一之模擬結果分析與討論 37 3.3. 例二之情境模擬 41 3.3.1例二之模擬結果分析與討論 42 4. 模式之情境模擬暨模擬結果分析與討論(二) 45 4.1. 例三之情境模擬 46 4.1.1例三之模擬結果分析與討論 47 4.2. 例四之情境模擬 52 4.2.1例四之模擬結果分析與討論 53 4.3. 例五之情境模擬 60 4.3.1例五之模擬結果分析與討論 62 5. 結論與未來展望 75 5.1. 結論 75 5.2. 未來展望 76 參考文獻 79 作者簡介 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 混合非線性規劃 | zh_TW |
| dc.subject | 水網路 | zh_TW |
| dc.subject | 數學規劃法 | zh_TW |
| dc.subject | Water Newtok | en |
| dc.subject | Superstructure | en |
| dc.subject | Mathematical Programming | en |
| dc.title | 以數學規劃法做用水網路最適化設計之研究 | zh_TW |
| dc.title | A Study on Optumal Water Newtoks Design by Mathematical Programming Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃孝平,余政靖,張玨庭,陳文智 | |
| dc.subject.keyword | 水網路,數學規劃法,混合非線性規劃, | zh_TW |
| dc.subject.keyword | Water Newtok,Mathematical Programming,Superstructure, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
