Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35685
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙,簡國龍
dc.contributor.authorWen-Chu Chiangen
dc.contributor.author江文莒zh_TW
dc.date.accessioned2021-06-13T07:04:49Z-
dc.date.available2005-08-03
dc.date.copyright2005-08-03
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citation1. L. W. General considerations. In: Goodman LS, Gilman A, eds. The Pharmacological Basis of Therapeutic. 1970:1154.
2. Acrchibald L PL and Monnet D. Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis 1997;24:211-5.
3. File TM, Jr. Overview of resistance in the 1990s. Chest 1999;115(3 Suppl):3S-8S.
4. Jones RN. The emergent needs for basic reseach, education, and surveillnce of antimicrobial resistance. Diagn Microbiol Infect Dis 1996;25:1-9.
5. Castiglia M, Smego RA, Jr. The global problem of antimicrobial resistance. J Am Pharm Assoc (Wash) 1997;NS37(4):383-7.
6. Emori TG, D.H. Culver, and T.C. Horan. National Nosocomial Infections Surveillance (NNIS) system: descrption of surveillnce methods. Am J Infect Control 1991;19:19-35.
7. Jones RN, S.A. Marshall, M.A. Pfaller, W.W.Wilke, R.J. Hollis, M.E. Erwin, M.B. Edmond, R.P. Wenzel, and the SCOPE Hospital Study Group. Nosocomial enterococcal bloodstream infections in the SCOPE Program: antimicrobal resistance, species occurence, molecular testing results, and laboratory testing accuracy. Diagn Microbiol Infect Dis 1997;29:95-102.
8. Voelker R. New group tracks hospital's drug-resistant bugs. JAMA 1996;275:177-8.
9. Intensive Care Antimicrobial Resistance Epidemiology (ICARE) Surveillance Report, data summary from January 1996 through December 1997: A report from the National Nosocomial Infections Surveillance (NNIS) System. Am J Infect Control 1999;27(3):279-84.
10. Pfaller MA, Jones RN, Doern GV, Kugler K. Bacterial pathogens isolated from patients with bloodstream infection: frequencies of occurrence and antimicrobial susceptibility patterns from the SENTRY antimicrobial surveillance program (United States and Canada, 1997). Antimicrob Agents Chemother 1998;42(7):1762-70.
11. Sader HS, Jones RN, Gales AC, Silva JB, Pignatari AC. SENTRY antimicrobial surveillance program report: Latin American and Brazilian results for 1997 through 2001. Braz J Infect Dis 2004;8(1):25-79.
12. Bell J, Turnidge J. SENTRY Antimicrobial Surveillance Program Asia-Pacific region and South Africa. Commun Dis Intell 2003;27 Suppl:S61-6.
13. Sader HS, Sampaio JL, Zoccoli C, Jones RN. Results of the 1997 SENTRY Antimicrobial Surveillance Program in Three Brazilian Medical Centers. Braz J Infect Dis 1999;3(2):63-79.
14. Sader HS, Jones RN, Gales AC, Winokur P, Kugler KC, Pfaller MA, et al. Antimicrobial susceptibility patterns for pathogens isolated from patients in Latin American medical centers with a diagnosis of pneumonia: analysis of results from the SENTRY Antimicrobial Surveillance Program (1997). SENTRY Latin America Study Group. Diagn Microbiol Infect Dis 1998;32(4):289-301.
15. Lauderdale TL, Clifford McDonald L, Shiau YR, Chen PC, Wang HY, Lai JF, et al. The status of antimicrobial resistance in Taiwan among gram-negative pathogens: the Taiwan surveillance of antimicrobial resistance (TSAR) program, 2000. Diagn Microbiol Infect Dis 2004;48(3):211-9.
16. MA. M. Epidemiology and clinical inpact of gram-negative sepsis. Infect Dis Clin North Am 1991;5(4):739-52.
17. Carmeli Y, Troillet N, Karchmer AW, Samore MH. Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. Arch Intern Med 1999;159(10):1127-32.
18. Lautenbach E, Patel J.B., Bilker WB, Edelstein P.H., Fishman N.O. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumonia: risk factors for infection and impact of resistance on outcome. Clin Infect Dis 2001;32:1162-71.
19. Virk A, Steckelberg JM. Clinical aspects of antimicrobial resistance. Mayo Clin Proc 2000;75(2):200-14.
20. Weinstein MP, Towns ML, Quartey SM, et al. The Clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis 1997;21:584-602.
21. Pop-Vicas AE DAE. The rising influx of multidrug-resistant gram-negative bacilli into a tertiary care hospital. Clin Infect Dis 2005;40(12):1792-8.
22. Aurora E P-VaEMCDA. The rising influx of multidrug-resistant gram-negative bacilli into a tertiary care hospital. Clin Infect Dis 2005 (15 June);40.
23. Pop-Vicas AE, D'Agata EM. The rising influx of multidrug-resistant gram-negative bacilli into a tertiary care hospital. Clin Infect Dis 2005;40(12):1792-8.
24. Lucet JC CS, Decre D, Vanjak D, Macrez A, Bedos JP, et al. Outbreak of multiply resistant enterobacteriaceae in an intensive care unit: epidemiology and risk factors for acquistion. Clin Infect Dis 1996;22:430-6.
25. De Champs C, Rouby D, Guelon D, Sirot J, Sirot D, Beytout D, et al. A case-control study of an outbreak of infections caused by Klebsiella pneumonia strains producng CTX-1(TEM-3) beta-;actamase. J Hosp Infect 1991;18:5-13.
26. Paterson DL ML, Casellas JM, Ko WC, Goossens H, Von Gottberg A, et al. Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum beta-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clin Infect Dis 2000;30:437-8.
27. Wiener J QJ, Bradford PA, Goering RV, Nathan C, Bush K, et al. Multiple antibiotic-resistant Klebsiella pneumoniae and Escherichia coli in nurisng home. JAMA 1999;281:517-23.
28. Friedman ND KK, Stout JE, McGarry SA, Trivette SL, Briggs JP, Lamm W, Clark C, MacFarquhar J, Walton AL, Reller LB, Sexton DJ. Health care--associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 2002;137:791-7.
29. Siegman-Igra Y FB, Orni-Wasserlauf R, Golan Y, Noy A, Schwartz D, Giladi M. Reappraisal of community-acquired bacteremia: a proposal of a new classification for the spectrum of acquisition of bacteremia. Clin Infect Dis 2002;34:1431-9.
30. Schiappa DA HM, Matushek MG, Hashemi FN, Sullivan J, Smith KY, et al. Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli bloodstream infection: a case-control and molecular epidemiologic investigation. J Infect Dis 1996;174:529-36.
31. Blot S VK, De Bacquer D, Colardyn F. Nosocomial bacteremia caused by antibiotic-resistant gram-negative bacteria in critically ill patients: clinical outcome and length of hospitalization. Clin Infect Dis 2002;34(12):1600-6.
32. Pena C PM, Ricart A, Ardanuy C, Ayats J, Linares J, et al. Risk factors for faecal carriage of Klebsiella pneumoniae producing extended spectrum beta-lactamase (ESBL-KP) in intensive care unit. J Hosp Infect 1997;35:9-16.
33. Piroth L AH, Doise JM, Vincent-Martin M. Spread of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae: are beta-lactamase inhibitors of therapeutic value? Clin Infect Dis 1998;27:76-80.
34. Rao GG. Risk factors for the spread of antibiotic-resistant bacteria. Drugs 1998;55(3):323-30.
35. Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med 2002;136(11):834-44.
36. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 2000;118(1):146-55.
37. Kollef MH. Inadequate antimicrobial treatment: an important determinant of outcome for hospitalized patients. Clin Infect Dis 2000;31 Suppl 4:S131-8.
38. Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 1999;115(2):462-74.
39. Zaragoza R, Artero A, Camarena JJ, Sancho S, Gonzalez R, Nogueira JM. The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin Microbiol Infect 2003;9(5):412-8.
40. Bryant RE HA, Hood CE, Koenig MG. Factors affecting mortality of gram-negative rod bacteremia. Arch Intern Med 1971;127:120-8.
41. Bryan CS RK, Brenner ER. Analysis of 1,186 episodes of gram-negative bacteremia in non-university hospitals: the effects of antmicrobial therapy. Rev Infect Dis 1983;5:629-38.
42. Wasson JH, Sox HC, Neff RK, Goldman L. Clinical prediction rules. Applications and methodological standards. N Engl J Med 1985;313(13):793-9.
43. Laupacis A, Sekar N, Stiell IG. Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA 1997;277(6):488-94.
44. Ho M, Hsiung CA, Yu HT, Chi CL, Yin HC, Chang HJ. Antimicrobial usage in ambulatory patients with respiratory infections in Taiwan, 2001. J Formos Med Assoc 2004;103(2):96-103.
45. Goldberg D. The cephalosporins. Med Clin North Am 1987;71:1113.
46. Gantz NM BR, Berk SL, Esposito AL, Gleckman RA. Manual f clinical problems in infectious disease. Fourth edition. Chap. 74: Choosing a cephalosporin. 1999:410-4.
47. MacDonald KL CM, Hargrett-Bean NT, Wells JG, Puhr ND, Collin SF, Blake PA. Changes in antimicrobial resistance of Salmonella isolated from humans in the United States. JAMA 1987;11(258):1496-9.
48. Ackers ML PN, Tauxe RV, Mintz ED. Laboratory-based surveillance of Salmonella serotype Typhi infections in the United States: antimicrobial resistance on the rise. JAMA 2000;283(20):2668-73.
49. Ko WC LH, Chuang YC, Liu CC, Wu JJ. Clinical features and therapeutic implications of 104 episodes of monomicrobial Aeromonas bacteraemia. J Infect. 2000;40(3):267-73.
50. Weber JT ME, Canizares R, Semiglia A, Gomez I, Sempertegui R, Davila A, Greene KD, Puhr ND, Cameron DN, et al. Epidemic cholera in Ecuador: multidrug-resistance and transmission by water and seafood. Epidemiol Infect 1994;112(1):1-11.
51. van den Bogaard AE, Stobberingh EE. Antibiotic usage in animals: impact on bacterial resistance and public health. Drugs 1999;58(4):589-607.
52. Sharma H, Unicomb L, Forbes W, Djordjevic S, Valcanis M, Dalton C, et al. Antibiotic resistance in Campylobacter jejuni isolated from humans in the Hunter Region, New South Wales. Commun Dis Intell 2003;27 Suppl:S80-8.
53. Sullivan LM MJ, D'Agostino RB Sr. Presentation of multivariate data for clinical use: The Framingham Study risk score functions. Stat Med 2004;23(10):1631-60.
54. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143(1):29-36.
55. Fabian Jaimes CA, Giovannii Ruiz, Jorge Cuervo, juan Botero, Gloria Velez, natalia Upegui, and faber Machado. Predicting Bacteremia at the Bedside. Clin Infect Dis 2004;2004(38):357-62.
56. Aloy Duch A, Espejo Arenas E, Mauri Pont M, Garcia Restoy E, Simo Sanahuja M, Bella Cueto F. [Bacteremia in the patient with liver cirrhosis. Prospective study of 61 episodes]. Enferm Infecc Microbiol Clin 1990;8(9):540-3.
57. Kuo CH, Changchien CS, Yang CY, Sheen IS, Liaw YF. Bacteremia in patients with cirrhosis of the liver. Liver 1991;11(6):334-9.
58. Mizuno R, Nishiyama Y, Shimizu S, Kitagawa M. [Clinical study on bacteremia in patients with liver cirrhosis]. Kansenshogaku Zasshi 1996;70(5):456-62.
59. Thulstrup AM, Sorensen HT, Schonheyder HC, Moller JK, Tage-Jensen U. Population-based study of the risk and short-term prognosis for bacteremia in patients with liver cirrhosis. Clin Infect Dis 2000;31(6):1357-61.
60. Graudal N, Milman N, Kirkegaard E, Korner B, Thomsen AC. Bacteremia in cirrhosis of the liver. Liver 1986;6(5):297-301.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35685-
dc.description.abstract前言:
格蘭氏陰性菌血症是臨床上常見且預後不佳的感染急症。抗生素抗藥性的出現使得這樣的情形更加惡化。針對高抗藥性的格蘭氏陰性菌,雖然已經有許多國外文獻試圖找出流行病學上各種的危險因子,但是對於將危險因子量化以直接協助臨床應用的研究仍付之闕如,而有關台灣格蘭性陰性菌抗藥性危險因子的本土性資料亦少有以英文發表之研究報告。
目的:
找出具有抗藥性格蘭氏陰性菌血症病患之相關危險因子及各種臨床特徵,並嘗試以此流行病學之量性結果建立預測模式,以提供臨床醫師在細菌鑑定結果及抗生素感受性確認前,治療疑似格蘭氏陰性菌感染症病人時的藥物選擇參考。
材料與方法:
自民國 90 年 6月1日起至民國91年5月31日止,以在台大醫院急診醫學部檢驗出的格蘭氏陰性菌血症病患之臨床資料進行之前瞻性研究。排除15歲以下的兒童及創傷病患。收集的資料包含病患背景、先前疾病、醫院接觸史(包括詳細的住院史及健康照護相關史如洗腎或門診化療等) 及到院之臨床表現等為變項 (exposures)。定義以針對第一代環孢靈素 (以cefazolin 為代表; 簡寫為 CZ-RES) 出現抗藥性及針對第三代環孢靈素 (以ceftriaxone 為代表;簡寫為 CTX-RES) 出現抗藥性之格蘭氏陰性菌菌血症為事件(outcomes)。並以隨機分派 (random allocation) 的方式將所有資料的三分之二列入模式導出組 (derivation),三分之一列入模式驗證組 (validation)。
將導出組中單變項分析發現有意義的結果導入羅吉斯氏迴歸 (logistic regression) 之多變項分析以建立統計預測模式。除了在驗證組測試預測模式之效度外,亦使用參考變項係數之整數化給分法(coefficient-based scoring method) 簡化預測模式以方便臨床應用。
結果:
研究期間共收集 695筆格蘭氏陰性菌血症之病人資料。針對 CZ-RES 預測模式,經羅吉斯氏迴歸求得之危險因子為「本次菌血症距離前次出院時間」、 「前次住院曾有感染對ceftriaxone 有抗藥性之細菌」、 「移植後正在服用免疫抗制劑的病患」、 「病患來源是否為安養院或病患本身是否為中風併有反覆嗆入史」 及「病患到達急診處時的血氧濃度小於 95%」。在本研究中,「肝硬化」 與感染抗藥性格蘭氏陰性菌血症之機會呈現逆相關。以上述因子建立對「CZ-RES」 之預測模式,其使用者操作特徵曲線 (Receiver Operating Characteristic curve; ROC curve) 下面積為 0.76,其 95% 信賴區間為0.71 ~ 0.81。
針對 CTX-RES 預測模式,選入的變項除包含了所有 「CZ-RES」的預測因子外,尚包括的危險因子為「病患到達急診處第一次驗血的白血球數目不正常( <1000/mm3 或 > 15,000 /mm3)。」以上述因子建立對「CTX-RES」 之預測模式,其使用者操作特徵曲線 (ROC curve) 下面積為 0.82,其 95% 信賴區間為0.76 ~ 0.88。
簡化後的參考係數之整數化給分預測模式,其 ROC curve 下面積與原導出模式非常接近。
結論:
本研究以台灣本土急診病患為對象,找出在可能產生抗藥性格蘭氏陰性菌血症之危險因子並具以建立有效度驗證之預測模式。此預測模式更被簡化成危險因子整數分數計分以方便臨床使用。在第一線醫師面對可能患有格蘭氏陰性菌血症感染的病人、且細菌鑑定及抗生素感受性報告尚未得知時,此預測模式將有助於正確地選擇經驗性抗生素。
zh_TW
dc.description.abstractBackground
The increasing prevalence of antimicrobial resistance among gram-negative bacteria has increasingly gained attention. Despite numerous studies on risk factors related to gram-negative antimicrobial resistance, there was short of predictive model underpinning quantitative epidemiological findings, particularly in Taiwan, for the prediction of antimicrobial resistant gram-negative resistance before bacterial culture result is released.

Objectives
To find out the risk factors for gram-negative resistant bacteremia in Taiwan and to develop a predictive model to assist physician in appropriate selection of the empirical antimicrobial agent before the microbiologic idenditification and drug susceptibility known.

Material and Methods
A prospective study was conducted form June 1, 2001 to May 31, 2002 at emergency department (ED) in National Taiwan University Hospital. Enrollees were patients with gram-negative bacteremia sampled at ED. Collected exposures included demographic characteristics of patients, underlying comorbidities, hospital exposure and health-care associated factors, and initial presentation. Two primary outcomes were defined as cefazolin-resistant gram-negative bacteremia (CZ-RES) and ceftriaxone-resistant gram-negative bacteremia (CTX-RES). Two-third of data was randomly allocated to a derivation dataset for training parameters pertaining to predictive models and the others to a validation dataset for testing model validity. Simplified models by coefficient-based scoring method were also established for ease of clinical application.

Results
There were total 695 episodes of gram-negative bacteremia in final analysis. Predictors identified for CZ-RES gram-negative bacteremia included length from prior hospitalization to existent bacteremia (increasing risk within one month), prior infection by ceftriaxone resistant strain, post-transplantation patients with immunosuppressant in use, nursing home residence or history of cerebral vascular accidents with repeated chocking events, and poor oxygen saturation (<95%) at arrival at ED. Cirrhosis showed its protective effect in reducing the odd of antimicrobial resistant gram-negative bacteremia. As to CZ-RES models, the area under receiver operating characteristic curve (ROC curve) was 0.76 (95% C.I.: 0.71 ~ 0.81)(C.I.: confidence interval).
The CTX-RES model included all predictors in CZ-RES model together with abnormal leukocyte count (<1000 or > 15,000 /mm3) at first blood sampling at ED. Besides, the risk temporal length form prior hospitalization is shorter (increasing risk within two weeks). The area ROC curve was 0.82 (95% C.I.: 0.76 ~ 0.88). Area under ROC curve of two simplified integral scoring models was very close to the models by derivation sets.

Conclusion
We developed two quantitative predictive models by the application of identification and quantification of risks factors associated with antimicrobial resistant gram-negative infection. Application of these predictive models provided in this study can help physician in choosing empirical antibiotic appropriately before the bacterial culture result available.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:04:49Z (GMT). No. of bitstreams: 1
ntu-94-R92846003-1.pdf: 742419 bytes, checksum: 129be25ca73dc1cc366c65addb8cf7f2 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄
致謝 2
目錄 3
中文摘要 5
Abstract 8
BACKGROUND 12
Antimicrobial Resistance: Severity and Worldwide Surveillances 12
Risk Factors of Antimicrobial Resistant Gram-Negative Bacteria 15
Rationales for Further Exploration 17
Hypothesis and Objectives 18
Development of a Prediction Model 19
MATERIAL AND METHOD 20
Design and Setting, and Enrollees 20
Exposure Assessment 20
Participant Interview and Follow-up 20
Collections and Definitions of Covariates 22
Outcomes Management 24
Rationales of Focusing on Resistance to Cephalosporins 24
Definitions of Outcome 25
Assessments of Microbiology and Antimicrobial Susceptibility 26
Predictive Model 27
Derivation and Validation Process 27
Coefficient-Based Scoring Method 27
Statistic Analysis 28
Data Analysis 28
Logistic Model 28
RESULTS 31
Demographic Description and Enrollment Flowchart 31
Univariate Analysis 31
Multivariate Analysis 32
Management of collinerity 32
Final predictors for CZ-RES model and CTX-RES models 33
Coefficient-Based Scoring Models 35
Receiver Operating Characteristic (ROC) Curves 36
Clinical Cut-Point for Scoring Models 37
Performance Indices of Predictive Model 38
Effect of prior hospitalization on existent gram-negative bacteremia 39
DISICUSSION 40
Major Contributions of this Study 40
Clinical Utility of the Predictive Models 41
Comparison with previous literatures 41
Limitations of this study 45
CONSLUSION 47
TABLES AND FIGURES 48
Table1. Summary of surveillance studies of antimicrobial resistance 48
Table2. Summary of risk factors to resistant gram-negative bacteria. 52
Table3. Univariate analyses in derivation dataset 57
Table4. Example of management of collinerity 62
Table5. Predictors and assigned scores in CZ-RES model 64
Table6. Predictors and assigned scores in CTX-RES model 65
Table7. C-statistic in different combinations of predictors 66
Table8. Risk of antimicrobial resistance in different scoring levels 67
Table9. Temporal analysis of prior hospitalization to current event of gram-negative bacteremia 68
Figure1. Steps of study process 69
Figure2. Flowchart of data enrollment an assignment 70
Fignre3. ROC curves of CZ-RES models 71
Figure4. ROC curves of CTX-RES models 72
Figure5. Gaussian distribution of scores in different outcome 73
Figure6. Risk of antibiotic resistance in scoring levels 74
REFERENCES 75
APPENDICIES 84
A. Recording Form 84
B. SAS Programs 86
dc.language.isoen
dc.subject格蘭氏陰性菌血症zh_TW
dc.subject抗生素抗藥性zh_TW
dc.subject抗藥性zh_TW
dc.subject預測模型zh_TW
dc.subject格蘭氏陰性菌zh_TW
dc.subjectbacteremiaen
dc.subjectpredictive modelen
dc.subjectantibiotic resistanceen
dc.subjectrisk factoren
dc.subjectinfectionen
dc.subjectgram-negative bacteremiaen
dc.subjectantimicrobial resistanceen
dc.title急診處抗藥性格蘭氏陰性菌血症預測模型之建立zh_TW
dc.titlePREDICTVE MODEL OF ANTIBIOTIC-RESISTANT GRAM-NEGATIVE BACTEREMIA AT EMERGENCY DEPARTMENTen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文鍾,陳宜君,張淑惠
dc.subject.keyword抗生素抗藥性,抗藥性,格蘭氏陰性菌血症,預測模型,格蘭氏陰性菌,zh_TW
dc.subject.keywordbacteremia,gram-negative bacteremia,infection,risk factor,antimicrobial resistance,antibiotic resistance,predictive model,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2005-07-27
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
725.02 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved