請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35643完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡文聰 | |
| dc.contributor.author | Yu-An Chen | en |
| dc.contributor.author | 陳佑安 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:02:40Z | - |
| dc.date.available | 2005-08-01 | |
| dc.date.copyright | 2005-08-01 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-27 | |
| dc.identifier.citation | 1 S. H. Ahn, Y. K. Kim, “Fabrication and Experiment of A Planar Micro Ion Drag Pump,” Sensors and Actuators A , Vol. 70, pp. 1-5, 1998.
2 S. Boehm, W. Olthuis, P. Bergveld, “A Bi-Directional Electrochemically Driven Micro Liquid Dosing System with Integrated Sensor/Actuator Electrodes,” 13th IEEE Int. Conf. on Micro Electro Mechanical Systems, pp. 92-95, 2000. 3 N. A. Polson, M. A. Hayes, “Microfluidics Controlling Fluids in Small Places,” Anal. Chem. , Vol. 73, pp. 312a-319a, 2001. 4 R. Pethig, Y. Huang, X. B. Wang, and J. P. H. Burt, “Positive and Negative Dielectrophoretic Collection of Colloidal Particles Using Interdigitated Castellated Microelectrodes,” J. Phys. D., Vol. 25, pp. 881-888, 1992. 5 A. Ramos, H. Morgan, N. G. Green and A. Castellanos, “AC Electric-Field-Induced Fluid Flow in Microelectrodes,” J. Colloid interface Sci., Vol. 217, pp. 420-422, 1999. 6 A. B. D. Brown, C. G. Smith and A. R. Rennie, “Pumping of Water with AC Electric Fields Applied to Asymmetric Pairs of Microelectrodes,” Phys. Rev. E, Vol. 63, pp. 016305, 2000. 7 A. Ramos, A. Gonzalez, A. Castellanos, N. G. Green, and H. Morgan, “Pumping of Liquid with AC Voltages Applied to Asymmetric Pairs of Microelectrodes,” Phys. Rev. E, Vol. 67, pp. 056302, 2003. 8 P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953. 9 A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, 2001. 10 R. J. Hunter, Foundations of Colloid Science, Oxford, 1986. 11 S. Debesset, C. J. Hayden, C. Dalton, J. C. T. Eijkel, and A. Manz, “An AC Electroosmotic Micropump for Circular Chromatographic Applications,” Lab Chip, Vol. 4, pp. 396-400, 2004. 12 Y. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci., Vol. 28, pp. 153-184, 1998. 13 V. Studer, A. Pepin, Y. Chen, and A. Ajdari, “An Integrated AC Electrokinetic Pump in A Microfluidic Loop for Fast and Tunable Flow Control,” Analyst, Vol. 129, pp. 944-949, 2004 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35643 | - |
| dc.description.abstract | 中 文 摘 要
本論文探討以交流電滲流為原理利用平面非對稱電極陣列在微尺度下驅動電解質溶液。交流電滲流的成因可歸因為平行於平面電極的電場分量與鄰近電極表面之帶電離子的交互作用。基於由Ramos所提出之理論分析,在電極表面流體流動速度分佈可解出【7】。數值計算結果說明由電極之非對稱性可推動流體往特定方向流動。實驗方面,電極陣列以電子束蒸鍍金/鉻於玻璃底材上,再以微影蝕刻製程定義其幾何;微流道由軟微影製程中Replica molding技術製作。實驗結果驗證氯化鉀溶液(10-4M)可由67對非對稱電極陣列所驅動。 實驗結果顯示氯化鉀溶液被驅動方向會受到施加電壓(1 to 9 volts peak to peak)與/或頻率(100Hz to 100kHz)影響。在較高電壓與/或較高頻率的操作條件下,幫浦推動方向為由寬電極往窄電極方向且可能成因為faradaic process。相反地,在較低電壓與較低頻率,幫浦推動方向與先前相反且其成因為在電極上形成之電雙層。在分別以faradaic與non-faradic效應為主的幫浦推動下,流體速度皆超越20微米/秒。此外,在固定頻率1kHz下,亦觀察到流體流動在某特定電壓下改變其方向的現象。 | zh_TW |
| dc.description.abstract | ABSTRACT
Pumping of electrolyte solution in micro scale, by planar asymmetric electrode array, based on AC electro-osmosis (ACEO) is reported in this thesis. The principle of ACEO flow is attributed to interaction between the component of electric field parallels the electrode surface and ions adjacent to the electrodes. Based on theoretical analysis proposed by Ramos et al. [7], distribution of flow velocity on electrode surface is calculated. Numerical results show that pumping can be achieved by asymmetry electrode geometry. Experimentally, the microfluidic chip is fabricated by electron beam evaporation, with Au/Cr on glass substrate, for the electrode array and replica molding via soft lithographic technique for the micro-channel. Total of 67 pairs of asymmetric electrode array to pump KCl solution (10-4M) are demonstrated. Results show that pumping direction can be controlled by tuning the excitation voltage (1 to 9 volts peak to peak), and/or frequency (100Hz to 100kHz). Higher voltage, and/or frequency, results in pumping direction from wide to narrow electrode – indicative of faradaic process. Conversely, non-faradaic process occurs with lower voltage and/or frequency, which causes reversal in pumping direction and is attributed to electrical double layer forming on electrode surfaces. Maximum pumping velocity is over 20μm/sec for both faradaic and non-faradaic processes. In addition, transitional potential that causes a change in pumping direction is observed under a fixed frequency of 1kHz. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:02:40Z (GMT). No. of bitstreams: 1 ntu-94-R92543067-1.pdf: 736202 bytes, checksum: 72f913bd204c459310e10ada43c78059 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | ABSTRACT 4
中 文 摘 要 5 CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 6 1.1 RESEARCH BACKGROUND AND MOTIVATION 6 1.1.1 MicroElectroMechanics System (MEMS) and microfluidics 6 1.1.2 Mechanical and non-mechanical micropump 7 1.2 LITERATURE REVIEW FOR AC ELECTRO-OSMOSIS 8 CHAPTER 2. THEORY 11 2.1 AC ELECTRO-OSMOSIS 11 2.1.1 Nonfaradaic process (EDL) and faradaic process 11 2.1.2 Electro-osmosis flow 13 2.2 PUMP BY ASYMMETRY OF ELECTRODE ARRAY 17 CHAPTER 3. CHIP FABRICATION 20 3.1 FABRICATION OF ELECTRODES. 20 3.1.2 Surface preparation 21 3.1.3 Metal deposition 21 3.1.4 Electrode patterning 21 3.2 MICROCHANNEL FABRICATION 23 CHAPTER 4. EXPERIMENTAL SETUP 26 4.1 ELECTROLYTE SOLUTION AND PARTICLES PREPARATIONS 26 4.2 APPARATUS, PROCEDURE AND EXPERIMENTAL SETUP 27 4.2.1 Apparatus 27 4.2.2 Procedure and experimental setup 29 CHAPTER 5. EXPERIMENTAL RESULTS 31 5.1 AC ELECTRO-OSMOSIS FLOW INDUCED BY SYMMETRIC ELECTRODE 31 5.2. AC ELECTRO-OSMOSIS PUMP 32 5.2.1 Pumping with nonfaradaic process 32 5.2.1.1 Observation of flow field by pump with nonfaradaic effect 34 5.2.2 Pumping with faradaic process 36 5.3. FLOW FIELD INDUCED BY OBLIQUE ASYMMETRIC ELECTRODE ARRAY 38 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS 39 6.1 CONCLUSIONS 39 6.2 FUTURE WORKS 39 REFERENCE 40 | |
| dc.language.iso | en | |
| dc.subject | 交流電滲流 | zh_TW |
| dc.subject | 微幫浦 | zh_TW |
| dc.subject | PDMS | en |
| dc.subject | AC Electro-osmosis | en |
| dc.subject | micropump | en |
| dc.title | 交流電滲流應用於微幫浦之元件研究 | zh_TW |
| dc.title | An AC Electro-osmosis Micropump | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李雨,沈弘俊 | |
| dc.subject.keyword | 交流電滲流,微幫浦, | zh_TW |
| dc.subject.keyword | AC Electro-osmosis,micropump,PDMS, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 718.95 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
