請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35633完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪淑蕙(Shu-Huei Hung) | |
| dc.contributor.author | Hsin-Ying Yang | en |
| dc.contributor.author | 楊欣穎 | zh_TW |
| dc.date.accessioned | 2021-06-13T07:02:10Z | - |
| dc.date.available | 2006-01-01 | |
| dc.date.copyright | 2005-07-29 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-26 | |
| dc.identifier.citation | Baig, A.M., F.A. Dahlen and S.-H. Hung, Traveltimes of waves in three-dimension random media, Geophys. J. Int., 153, 467-482, 2003.
Baig, A.M. and F.A. Dahlen, Statistics of traveltimes and amplitudes in random media, Geophys. J. Int., 158, 187-210, 2004a. Baig, A.M. and F.A. Dahlen, Traveltime biases in random media and the S-wave discrepancy, Geophys. J. Int., 158, 922-938, 2004b. Bijwaard, H. and W. Spakman, Non-linear global P-wave tomography by iterated linearized Inversion, Geophys. J. Int., 141, 71-82, 2000. Boyse, W. and J.B. Keller, Short acoustic, electromagnetic, and elastic waves in random media, J. Opt. Soc. Am., 12, 380-389, 1995. Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, A non-reflecting boundary condition for discrete acoustic and elastic wave equations, Geophys., 50, 705-708, 1985. Dahlen, F.A., S.-H. Hung, and G. Nolet, Fréchet kernels for finite-frequency traveltimes - I. Theory, Geophys. J. Int., 141, 157-174, 2000. Dziewonski, A.M. and D.L. Anderson, Preliminary Reference Earth Model (PREM), Phys. Earth Planet. Inter., 25, 297-356, 1981. Frankel, A. and R.W. Clayton, Finite difference simulations of seismic scattering: implications for the propagation of short-period seismic waves in the crust and model of crustal heterogeneity, J. Geophy. Res, 91B, 6465-6489, 1986. Grand, S.P., R.D. van der Hilst, and S. Widiyantoro, Global seismic tomography: a snapshot of convection in the Earth, GSA Today, 7, 1-7, 1997. Hung, S.-H. and D.W. Forsyth, Modelling anisotropic wave propagation in oceanic inhomogeneous structures using the parallel multidomain pseudo-spectral method, Geophys. J. Int., 133, 726–740, 1998. Hung, S.-H., F.A. Dahlen, and G. Nolet, Fréchet kernels for finite-frequency traveltimes - II. Examples, Geophys. J. Int., 141, 175-203, 2000. Hung, S.-H., F.A. Dahlen, and G. Nolet, Wavefront healing: a banana-doughnut perspective, Geophys. J. Int., 146, 289-312, 2001. Hung, S.-H., Y. Shen, and L.-Y. Chiao, Imaging seismic velocity structure beneath the Iceland hot spot: a finite frequency approach, J. Geophys. Res., 109, 8305, doi: 10.1029/2003JB002889, 2004. Ioose, B., Ph. Blanc-Benon, and C. Lhuillier, Statistical moments of travel times at second order in isotropic and anisotropic random media, Wave Random Media, 10, 381, 2000. Koketsu, K. and S. Sekine, Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth discontinuities, Geophys. J. Int., 132, 339-346, 1998. Kennett, B.L.N. and E.R. Engdahl, Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 105, 429-465, 1991. Klimeš, L., Correlation Functions of Random Media, Pure Appl. Geophys., 159, 1881-1831, 2002. Kravstov, Y. and Y. Orlov, Geometrical Optics of Inhomogeneous Media, Spring-Verlag, New York, 1990. Marquering, H., F.A Dahlen, and G. Nolet, Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox: Geophys. J. Int., 137, 805-815, 1999. Masters, G., G. Laske, H. Bolton, and A. Dziewonski, The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure, Seismology and Mineral Physics, 117, 63-87, 2000. Montelli, R., G. Nolet, G. Masters, F.A. Dahlen, E.R. Engdahl, and S.-H. Hung, Finite-frequency tomography reveals a variety of plumes in the mantle, Science, 303, 338-343, 2004. Mueller, R.K., M. Kaveh, and G. Wade, Reconstructive tomography and application to ultrasonics, Proc. IEEE, 67, 567-587, 1979. Müller, G., M. Roth, M. Korn, Seismic-wave traveltimes in random media, Geophys. J. Int., 110, 29-41, 1992. Pulliam, J., and R. Snieder, Ray perturbation theory, dynamic ray tracing and the determination of Fresnel zones, Geophys. J. Int., 135, 463-469, 1998. Roth, M., G. Müller, and R. Snieder, Velocity shift in random media, Geophys. J. Int., 115, 552-563, 1993. Sato, H. and M.C. Fehler, Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Springer-Verlag, New York, 1997. Shapiro, S.A., R. Schwarz, and N. Gold, The effect of random isotropic inhomogeneities on the phase velocity of seismic waves, Geophys. J. Int., 127, 783–794, 1996. Spetzler, J. and R. Snieder, The formation of caustics in two and three-dimensional media, Geophys. J. Int., 144, 175-182, 2001. Spetzler, J. and R. Snieder, The Fresnel volume and transmitted waves, Geophys, 69, 653–663, 2003. Um, J. and C. Thurber, A Fast Algorithm for two-point seismic ray tracing, Bull Seism. Soc. Am., 77, 972-986, 1987. Wen, L. and D.V. Helmberger, Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors, Science, 279, 1701-1703, 1998. White, B., B. Nair, and A. Baylies, Random rays and seismic amplitude anomalies, Geophys., 53, 903-907, 1988. Woodward, M.J., Wave-equation tomography, Geophys., 57, 15-26, 1992. Wu, R.-S. and K. Aki, Elastic wave scattering by a random medium and the small-scale inhomogeneous in the lithosphere, J. Geophy. Res., 90B, 10261-10273, 1985. Zhao, D. and A. Hasegawa, P wave tomographic imaging of the crust and upper mantle beneath the Japan islands, J. Geophys. Res., 98, 4333–4353, 1993. Zhao, D. and J. Lei, Seismic ray path variations in a 3-D global velocity model, Phys. Earth Planet. Inter., 141, 153-166, 2004. Zhao, L., T.H. Jordan, and C.H. Chapman, Three-dimensional Fréchet differential kernels for seismic delay times, Geophy. J. Int., 141, 558-576, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35633 | - |
| dc.description.abstract | Up-to-date seismic tomographic models essentially rely on infinite-frequency ray theory or finite-frequency Born-Frechét kernel theory (BKT) which translates observed travel time shifts of seismic waves into 3-D aspherical velocity variations within the earth. From a ray-theoretical point of view, a seismic wave only 'feels' the structure right on an infinite-thin, least-time geometrical ray path. Linearized ray theory (LRT) assumes the travel time shift is unchanged to first order for infinitesimally small variation in the ray path, and thus expressed as a line integral of seismic slowness perturbations along the unperturbed ray in a radially-symmetric earth. Nonlinear travel time tomography uses general ray theory (GRT) to reevaluate the 'exact' ray-theoretical travel times along the changing path trajectories in different starting 3-D models prior to each iterative inversion. Both theories are strictly valid for infinite-frequency waves. In reality, the wavefront of a finite-frequency wave naturally undergoes a diffractive healing process. Destructive interference of waves scattered off property heterogeneity among different frequencies renders the region of strong sensitivity of a travel time shift confined to the vicinity of the first Fresnel zone. Recent development in Born-Frechét kernel theory has gone beyond high-frequency ray approximation; Born single scattering theory is employed to account for the effects of wavefront healing and off-path scattering upon the travel time shift measured by cross-correlation of an observed seismic pulse with its spherical-earth synthetic. The 3-D Born-Frechét kernel expressing such travel time sensitivity is identically zero everywhere along the unperturbed ray path; rather, the maximum sensitivity lies within the fringe of its tubular geometry surrounding the ray.
We conduct a validation study of these three fundamental theories for seismic tomography by forward modeling finite-frequency travel times of scalar wave propagation in heterogeneous random media. We obtain 'ground-truth' travel time shifts from cross correlation of numerically-computed pressure-response seismograms with the corresponding pulses in the homogenous medium, and compare the measured data with those predicted by GRT, LRT, and BKT. Both ray theories suffer from poor travel time approximations whenever the scale length of medium heterogeneity is shorter than half of the first Fresnel zone width. Born-Frechét kernel theory, on the other hand, provides accurate predictions for various scale lengths, but only for weak heterogeneity strength (e < 4%). With the increasing e, the high-order change in travel times due to the detoured wave paths in heterogeneous media no longer is negligible, as assumed in LRT and BKT. General ray theory computes the travel times along the fastest paths with a ray-bending method and prominently improves modeling of high-frequency travel time fluctuations in strongly heterogeneous media (e > 3%) with intermediate to large scale lengths. Our forward-modeling experiments suggest that a nonlinear, finite-frequency theory for computing the 3-D sensitivity kernels of seismic travel times in 3-D earth models is necessarily required to resolve the mantle heterogeneity on various scale lengths and full strength spectra. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T07:02:10Z (GMT). No. of bitstreams: 1 ntu-94-R92224204-1.pdf: 2199771 bytes, checksum: 813286949c922a749239c37cccff59d0 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目錄 Ⅰ
圖目錄 Ⅲ 表目錄 Ⅳ 摘要 Ⅴ 第一章 序論 1 第二章 研究方法 9 2.1 速度模型 10 2.2 測站震源分布 16 2.3 真實走時異常 17 2.4 理論走時異常 20 2.4.1 一般化波線理論 (GRT) 21 2.4.2 線性化波線理論 (LRT) 26 2.4.3 香蕉甜甜圈理論 (BKT) 26 第三章 走時結果 30 3.1 走時異常資料散佈圖 30 3.2 斜率與截距 36 3.2.1 斜率 37 3.2.2 y軸截距 38 第四章 討論 40 4.1 高斯介質中走時異常的偏誤 40 4.2 高斯介質中走時異常的變異數 42 4.3 夫瑞奈帶 43 第五章 結論 45 附錄一 47 參考資料 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高斯隨機介質 | zh_TW |
| dc.subject | 走時 | zh_TW |
| dc.subject | 波線理論 | zh_TW |
| dc.subject | 有限頻寬 | zh_TW |
| dc.subject | traveltime | en |
| dc.subject | Gaussian random media | en |
| dc.subject | finite frequency | en |
| dc.subject | ray theory | en |
| dc.title | 模擬波與波線走時:有限頻寬與波線層析成像的極限 | zh_TW |
| dc.title | On the limitation of finite-frequency wave and infinite-frequency ray theories for the resolution of seismic traveltime tomography – A forward modeling approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 喬凌雲,郭本垣,龔源成 | |
| dc.subject.keyword | 走時,波線理論,有限頻寬,高斯隨機介質, | zh_TW |
| dc.subject.keyword | traveltime,ray theory,finite frequency,Gaussian random media, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
