Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35610
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何旻真
dc.contributor.authorPei-Chun Liaoen
dc.contributor.author廖培鈞zh_TW
dc.date.accessioned2021-06-13T07:00:59Z-
dc.date.available2005-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citationReferences of Chapter 1
[1] G. P. Agrawal: Nonlinear Fiber Optics, 3rd ed. Academic Press, San Diego, Calif, (2001).
[2] L. F. Mollenauer, R. H. Stolen, and J. P. Gordan, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phy. Rev. Lett, vol. 45, pp. 1095 (1980)
[3] J. Hansryd, and P. A. Andrekson, “Wavelength tunable 40GHz pulse source based on fiber optical parametric amplifier,” Electron. Lett, vol. 37, pp. 584-585 (2001)
[4] J. Hansryd, and P. A. Andrekson, “O-TDM demultiplexer with 40dB gain based on a fiber parametric amplifier,” IEEE Photon. Technol. Lett., vol. 33, pp. 732-734 (2001)
[5] M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Kundsen, “Transparent wavelength conversion in fiber with 24nm pump tuning range,” Electron. Lett,, vol. 38, pp. 85-86 (2002)
[6] L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, “Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement,” J. Opt. Soc. Am. B, vol. 20, pp. 1532- 1536, (2003).
References of Chapter 2
[1] G. P. Agrawal: Nonlinear Fiber Optics, 3rd ed. (Academic Press, San Diego, Calif, (2001).
[2] D. Hollenbeck, and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B, vol. 19, pp.2886- 2892, (2002).
[3] K. Mori, H. Takara, and S. Kawanishi, “Analysis and design of supercontinuum pulse generation in a single-mode optical fiber,” J. Opt. Soc. Am. B, vol. 18, pp.1780-1792, (2001).
References of Chapter 3
[1] G. P. Agrawal: Nonlinear Fiber Optics, 3rd ed. Academic Press, San Diego, Calif, (2001).
[2] http://www.crystal-fibre.com/support/Supercontinuum%20-%20General.pdf
[3] H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioca, and K-I Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett, vol. 36, no. 25, pp.2089-2090, (2000).
[4] T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature, vol.416, pp.233-237, (2002).
[5] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, ”Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett, vol. 26, no. 9, pp. 608-610, (2001).
[6] K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic microscopy using supercontinuum light,” Opt. Express, vol. 12, no. 10, pp. 2096-2101, (2004)
[7] T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. of Selected Topics in Quantum Electron, vol. 5, no. 5, pp.1385-1391, (1999).
[8] W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endless single -mode photonic crystal fibres,” Opt. Express, vol. 12, no. 2, pp. 299-309, (2004).
[9] T. K. Birks, W. J. Wadsworth, and P. St. Russell, “Supercontinuum in tapered fibers,” Opt. Lett, vol. 25, no. 19, pp. 1415-1417, (2000).
[10] J. M. Dudley, and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. of Selected Topics in Quantum Electron, vol. 8, pp.651-659, (2002).
[11] J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. Russell, K. Korn, “Experimental evidence for supercontinuum generation by fission of high-order solitons in photonic fibers,” Phys. Rev. Lett, vol. 88, no. 17, pp. 173901_1-173901_4
[12] T. Hori, J. Takayanagi, N. Nishizawa, T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express, vol. 12, no.2 ,pp. 317-324, (2004).
[13] A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett, vol. 27, pp. 924-926, (2002).
[14] http://www.crystal-fibre.com/datasheets/NL-PM-750.pdf
[15] http://www.crystal-fibre.com/
[16] A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett, vol. 87, no. 20, pp. 203901_1-203901_4
[17] J. M. Dudley, X. Gu, L. Xu, M. Kemmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulation and experiments,” Opt. Express, vol. 10, no. 21, pp. 1215-1221, (2002)
References of Chapter 4
[1] C. J. McKinstrie, S. Radic, “Recent progress in optical amplification,” ECOC 2003, WE161~1.
[2] K. Y. Wang, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization- independent one-pump fiber-optical parametric amplifier,” IEEE Photon. Technol. Lett., vol. 14, pp. 1506-1508, (2002).
[3] J. Hansryd, A. Andrekson, M. Westlund, J. Lei, and P. Hedekvist, ”Fiber-based optical parametric amplifier and their applications,” IEEE J. of Selected Topics in Quantum Electron, vol. 8, pp.506-520, (2002).
[4] T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. of Selected Topics in Quantum Electron, vol. 5, pp.1385-1391, (1999).
[5] K. Y. Wang, M. E. Marhic, K. Uesaka, and L. G. Kazovsky, “Polarization- independent two-pump fiber optical parametric amplifier,” IEEE Photon. Technol. Lett., vol. 14, pp. 911-913, (2002).
[6] L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, “Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement,” J. Opt. Soc. Am. B, vol. 20, pp. 1532- 1536, (2003).
[7] W. Zhang, C. Wang, J. Shu, C. Jiang, and W. Hu, “Design of fiber-optical parametric amplifiers by genetic algorithm,” IEEE Photon. Technol. Lett., vol. 16, pp. 1652-1654, (2004).
[8] R. W. McKerracher, J. L. Blows, C. M. de Sterke, “Wavelength conversion bandwidth in fiber based optical parametric amplifiers,” Opt. Express, vol. 11, pp. 1002-1007, (2003)
[9] M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Modulation instabilities in dispersion-flattened fibers,” Phys. Rev. E, vol. 52, pp. 1072-1080, (1995).
[10] K. K. Chou, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 17, pp. 624-626, (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35610-
dc.description.abstract在本篇論文中,我們研究兩種光纖非線性效應--超連續光譜現象和光參數效應。我們用自己開發的數值模擬程式去分析超連續光譜現象,另一部分則利用光參數效應去設計光通訊元件。
要產生超連續光譜,常將高功率短脈衝的雷射打入高非線性光纖,光纖中的線性和非線性效應互相影響,進而產生同調的超寬頻光源。超連續光譜在光通訊, 頻率量測和生醫影像都有重要的應用,但它產生的機制太過複雜仍停留在研究的階段。我們用自己開發的程式追蹤模擬超連續光譜產生的過程,我們發現高階光孤子(soliton)分裂的現象可能是主要的效應。我們期望我們發展的模擬工具能幫助超連續光譜實驗的進行並實現最佳化。
光參數效應有多項在光通訊網路的應用,像是光參數放大器與光參數波長轉換器。混合多種光纖的光參數放大器能增進增益平坦,我們研究其增益平坦的穩定性,發覺需要精確的光纖色散參數值才能維持增益平坦。這使得它難以在現實生活上應用。另外,我們利用有兩個零色散波長的色散平坦光纖,去設計應用於高速光通訊網路的可調式光參數波長轉換器。我們研究第二個零色散波長造成的影響,並提出一個簡潔的設計方針。
zh_TW
dc.description.abstractIn this thesis, we investigated two nonlinear phenomena in optical fibers -- supercontinuum generation (SCG) and parametric effects. We developed numerical tools to analyze SCG and to design devices based on parametric effects.
When injecting short pulses with high peak power into optical fibers, generally fibers with high nonlinearities, coherent broadband light called supercontinuum is generated through complex interplays between linear and nonlinear effects. SCG has applications in areas of optical communications, frequency metrology, medical images, and so on. The mechanism of SCG is still under investigation because too many effects are involved. We develop numerical tools to monitor SCG evolutions. Our results show that fission of higher-order solitons might be the dominant effects. The tools and analyses will help SCG experiment and optimization in the future.
Parametric effects have several applications in optical networks such as optical parametric amplifiers (OPAs) and parametric wavelength converters (PWCs). Hybrid-fiber OPA has been proposed to improve the gain flatness of OPAs. We studied the gain-flatness stability of hybrid-fiber OPAs and find that the precise fiber dispersion profiles are required, which might prevent them from practical use. PWCs, by our definition, are tunable wavelength converters for high-speed wavelength routing. We design PWCs using nonlinear dispersion flattened fibers with two zero-dispersion wavelengths. We investigated the effect of second zero-dispersion wavelength and provided a simple guide line for PWC design.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T07:00:59Z (GMT). No. of bitstreams: 1
ntu-94-R92941055-1.pdf: 2909449 bytes, checksum: dc6c7fc4ec72388d1badb3094d441cef (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsChapter 1 Introduction 3
1.1 Motivation 3
1.2 Thesis Overview 5
Chapter 2 Theory and Numerical Model 7
2.1 Fiber Nonlinearity 7
2.2 Nonlinear Schrödinger Equation 9
2.3 Split-step Fourier Method 11
2.4 Pulse Propagation in Optical Nonlinear Fibers 14
2.4.1 Pulse Shapes and Chirping 14
2.4.2 Dispersion and SPM 15
2.4.3 Soliton 21
2.4.4 Intra-pulse Raman scattering 22
Chapter 3 Supercontinuum Generation 24
3.1 Basic Concepts 24
3.1.1 Highly Nonlinear Optical Fibers 26
3.1.2 Applications of SC 28
3.2 Simulation examples 28
3.2.1 SC in Dispersion-Decreasing Fiber 29
3.2.2 SC in Photonic Crystal Fiber 33
3.2.3 Experiment Results 36
3.3 SCG Analysis by Simulation Tools 38
3.3.1 SCG Pumped by Different Wavelengths 39
3.3.2 Raman Soliton and Dispersive Wave 42
3.3.3 SC Evolution 45
3.3.4 SCG under Different Injecting Conditions 51
Chapter 4 Parametric Processes 57
4.1 Theory of Four-Wave Mixing 57
4.2 Optical Parametric Amplifier 61
4.3 Hybrid-Fiber OPAs 64
4.4 Design of Parametric Wavelength Converter 74
Chapter 5 Conclusion 82
Appendix A 83
Appendix B 84
dc.language.isoen
dc.subject非線性光纖zh_TW
dc.subject超連續光譜zh_TW
dc.subject光參數效應zh_TW
dc.subjectsupercontinuum generationen
dc.subjectparametric effecten
dc.subjectnonlinear optical fibersen
dc.title在非線性光纖中的超連續光譜現象和光參數效應之應用與分析zh_TW
dc.titleAnalyses and Applications of Supercontinuum Generation and Parametric Process in Nonlinear Optical Fibersen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃鼎偉,張宏鈞,邱奕鵬
dc.subject.keyword超連續光譜,光參數效應,非線性光纖,zh_TW
dc.subject.keywordsupercontinuum generation,parametric effect,nonlinear optical fibers,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2005-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved