Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35555
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖振鐸
dc.contributor.authorMing-Yu Linen
dc.contributor.author林明佑zh_TW
dc.date.accessioned2021-06-13T06:58:15Z-
dc.date.available2005-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citationBergman, B. and Hynen, A. (1997). Dispersion Effects From Unreplicated
Designs in the 2k−p Series. Technometric, 39, 191-198.
Box, G. E. P. and Meyer, R. D. (1986b). Dispersion effects from fractional
designs. Technometrics, 28, 19-27.
Daniel, C. (1959). Use of Half-Normal Plots in InterpretingFactorial Two-Level
Experiments. Technometrics, 1, 311-341.
Ferrer, A. J. and Romero, R. (1993). Small samples Estimation of Dispersion
Effects From Unreplicated Data. Communications in Statistics.– Simula-
tions, 22, 975-995.
Franklin, M. F. and Bailey, R. A. (1977). Selection of Defining Contrasts and
Confounded Effects in Two-level Experiments. Appl. Statist., 26, 321-326
Liao, C. T. (1994). Fractional factorial designs for estimating location effects
and screening dispersion effects. Ph.D. dissertation, Colorado State uni-
versity, Department of Statistics, Fort Collins, Colordado, USA.
Liao, C. T. (2000). Identification of dispersion effects from unreplicated 2n−k
fractional factorial designs. Comput. Statist. Data Anal., 33, 291-298.
Liao, C. T. and Iyer, H. K. (2000). Optimal 2n−p fractional factorial designs for
dispersion effects under a location-dispersion model. Commun. Statist.–
Theory Meth. ,29, 823-835.
Liao, C. T. (2005). Two-level Factorial Designs for Searching Dispersion Fac-
tors and Estimating Location Main Effects. Journal of Statistical Planning and Inference (in press).
Mcgrath, R. N. and Lin, D. K. J. (2001). Confounding of Location and Dis-
persion Effects in Unreplicated Fractional Factorials. ASQ, 33
Montgomery, D. C. (2001). Design and Analysis of Experiments.
Pan, G. (1999). The impact of unidentified location effects on dispersion effects
identification from unreplicated factorial designs. Technometrics, 41, 313-
326.
Srivastava, J. N. and Li, J. (1996). Orthogonal designs of parallel flats type.
Journal of Statistical Planning and inference, 53, 261-283.
Wang, P. C. (1989). Tests for dispersion effects from orthogonal arrays. Com-
put. Statist Data Anal., 8, 109-117.
Wolfinger, R.D. and Tobias, R. D. (1998). Joint estimation of location , dis-
persion ,and random effects in robust design. Technometrics, 40, 62-71.
30
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35555-
dc.description.abstract在使用變方分析處理試驗資料時,同質變方是基本前提,若有某個因子在不同變級時,具有不同的變方,我們稱此因子為具有分散效應的因子。在過往的研究中,多為分析資料是否具有分散效應的方法,對於如何選擇設計則較少著墨,然而若能有效的找出合適的設計,不但可以大幅減低試驗的成本,也可以提高試驗的效率。
本研究主要針對 2^{n-p} 部分複因子設計,分析同質變方 (沒有分散效應存在) 與異質變方 (有分散效應存在) 的情形,並由 eta (位置效應) 的 BLUE (Best Linear Unbiased Estimator) 觀察當分散效應存在時 eta 的訊息矩陣的型態。接著建立一套方法來描述訊息矩陣中各元素的位置及大小,發現若分散效應存在時,不可能會有正交設計 (orthogonal designs) 產生。
另為了要計算試驗效率,我們整理出一簡單的公式,試驗者僅需知道設計的別名關係便可得到訊息矩陣的行列式值,以便比較不同設計間的差異,從中發現若分散效應越顯著,則試驗效率降低的越快。
在挑選最適設計方面,在給定一組欲估計的位置效應以及具有分散效應的因子後,使用 Franklin and Bailey (1977)的演算法找出可用 (eligible) 的設計,再配合之前建立的 D-最適準則 (計算每個設計的 D-最適分數) 以及最小偏差法準則 (minimum aberration criterion) ,撰寫成 R-電腦程式以供使用,並提供一些常用的列表於文中。
此外,因分散效應存在時會造成異質變方的情形,我們使用 Box and Meyer (1986) 提出的方法,利用常態機率圖找出較顯著的位置效應及分散效應,再使用 MLE (Maximum Likelihood Estimation)來估計各參數的估值,使研究人員能夠在分散效應存在時檢定有興趣的位置效應。
zh_TW
dc.description.abstractAlthough homogeneity of variance is a basic assumption in most ANOVA
analyses, it is not uncommon to encounter the situations that the variance of
the response variable changes from one experimental setting to another. In
factorial designs, the factors responsible for such change are called dispersion
factors. Recently, several articles study on how to identify the dispersion fac-
tors from experimental data. Clearly, it is still important to address the design
issue concerning the estimation of location effects when there exist dispersion
factors.
This study focuses on regular 2n−p fractional factorial designs (FFDs). We
simply consider the situation that there is exact one dispersion factor in the
experiment. The task is to estimate a set of specified location effects in this
situation. The BLUE (Best Linear Unbiased Estimator) of using GLSE
(Generalized Least Square Estimation) is applied and its information matrix
is shown to have a special pattern when using 2n−p FFDs. Namely, we estab-
lish a connection between the D-efficiency for with the alias relations of the
used 2n−p FFDs. Specifically, we show that there is no orthogonal design for
provided that the general mean and all location main effects are included in
it.
An algorithm modified from that of Franklin and Baily (1977) is given to
search for D-optimal designs for any specified within the class of 2n−p FFDs.
Moreover, the minimum aberration criterion is used to determine the final de-
sign if there are multiple equally D-optimal designs for a . The algorithm
is implemented in R language. Some classes of designs generated from the
algorithm are also reported.
The existence of dispersion factor results in heterogeneity of variance when
analyzing experimental data. According to the method proposed by Box and
Meyer (1986), we first use normal plotting to identify unusually large location effects and dispersion effects, simultaneously. Then we apply MLE (Maximum
likelihood Estimation) for the identified location and dispersion effects. Con-
sequently, the Wald’s test is used for the significance test of location effects.
Some data set is given to illustrate this analysis approach.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:58:15Z (GMT). No. of bitstreams: 1
ntu-94-R92621204-1.pdf: 590239 bytes, checksum: 4e18f7863597f518b3330d683b65a6f0 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents1 前言
1.1 部分複因子試驗設計之簡介 1
1.2 分散效應 (Dispersion Effect) 之簡介 1
1.3 研究動機與目的 2
1.4 前人研究 2
2 分散效應存在下估計位置效應的 D-最適設計 3
2.1 正規 2^n-p 部分複因子設計 3
2.2 同質變方前提下估計位置效應的 D-最適準則 4
2.3 分散效應存在下之分析 5
2.3.1 同質變方 6
2.3.2 異質變方 7
2.4 分散效應存在下之理論推導 7
2.5 分散效應對 D-最適分數的影響 12

3 分散效應存在下找尋 D-最適設計的方法 14
3.1 Franklin and Bailey (1977) 演算法 14
3.2 分散效應存在下找尋 D-最適設計 16
3.3 D-最適設計 17
4 分散效應存在下檢定位置效應之方法 22
4.1 單一重複設計估計位置及分散效應 22
4.1.1 分析方法 22
4.2 範例 24
5 結論與未來研究 27
5.1 總結 27
5.2 未來研究及討論 27
參考文獻 29
附錄 A:程式使用方法 31
附錄 B:找尋最適設計之R程式 32
dc.language.isozh-TW
dc.subject最適設計zh_TW
dc.subject分散性效應zh_TW
dc.subject位置效應zh_TW
dc.subjectDispersion effecten
dc.subjectLocation effecten
dc.subjectOptimal designen
dc.title分散性效應存在下位置效應之 D-最適部分複因子設計之研究zh_TW
dc.titleD-optimal Regular 2n−p Fractional Factorial Designs for
Location Effects with A Single Dispersion Factor
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡風順,丁兆平
dc.subject.keyword分散性效應,位置效應,最適設計,zh_TW
dc.subject.keywordDispersion effect,Location effect,Optimal design,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
576.41 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved