請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35553完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 關秉宗 | |
| dc.contributor.author | Yi-Fang Lin | en |
| dc.contributor.author | 林怡芳 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:58:09Z | - |
| dc.date.available | 2005-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-27 | |
| dc.identifier.citation | 柒、參考文獻
王相華。1995。不同光度對四種季風雨林樹種幼苗生長及形態之影響。林業試驗所研究報告季刊,10(4):405-418。 伍淑惠。1999。台灣大學附設山地實驗農場梅峰地區植物與植群之研究。國立台灣大學森林學研究所資源保育組碩士論文。 李靜峰。1997。台灣西北區楠櫧林帶之森林植物社會演替。國立台灣大學森林學研究所資源保育組碩士論文。 沈介文。2000。五種台灣原生闊葉樹種於不同光度下之生態生理特性。國立台灣大學森林學研究所碩士論文。 沈勇強。1984。台灣實驗林天然保護林區植群生態之研究。國立台灣大學森林學研究所樹木組碩士論文。 林文智。2002。多納針闊葉林土壤種子庫組成及苗木生長與生理對光環境的反應。國立屏東科技大學森林系碩士論文。 林世宗、游昀斌、莊俊龍、林進龍。2000。行政院農委會八十九年度試驗研究計晝研究報告。 林世宗、簡文村。1998。 臺灣粗榧苗木耐蔭性試驗。國立臺灣大學農學院實驗林研究報告,12(2):105-119。 高瑞卿。1995。台灣東部立霧溪流域森林植群分析。國立台灣大學森林學研究所資源保育組碩士論文。 張安邦、廖天賜、方榮坤、翁仁憲、李丁松。2000。光度對大葉楠與香楠形質生長的影響。林業研究季刊,22(1):11-12 。 郭耀綸、江璧合。2003。台灣特有樹種台灣假黃楊、小芽新木薑子及台灣梭羅木的生長及光合作用對光量的反應。台灣林業科學,18(1):55-66。 郭耀綸、楊月玲、吳祥鳴。1999。墾丁熱帶森林六種樹苗生長性狀及光合作用對光量的可塑性。台灣林業科學,14(3):255-273。 陳子英。2004。蘭陽溪的植群分類系統之研究。國立臺灣大學生物資源暨農學院實驗林研究報告,18(3):171-206。 陳俊雄。1996。臺灣西北區楠櫧林帶森林植群分析。國立台灣大學森林學研究所碩士論文。 陳俊銘。2004。台灣東北部北勢溪上游之植群分析。國立台灣大學森林學研究所資源保育組碩士論文。 陳逸忠。1999。台灣大學山地實驗農場梅峰地區植物與植群之研究。 國立台灣大學森林學研究所資源保育組碩士論文。 黃進輝、郭幸榮。1996。烏心石苗木形態於不同光度下之變化。臺大實驗林研究報告,10(1):49-65。 黃獻文。1984。日月潭鄰近山區植群生態之研究。國立台灣大學森林學研究所樹木組碩士論文。 廖天賜、方榮坤、林添富。1995。光度對臺灣櫸及毛柿苗木形態生長之影響。中興大學實驗林研究彙刊,17(20):131-146。 劉棠瑞、廖日京。1994。樹木學上。臺灣商務印書館。 劉棠瑞、陳建鑄。1991。臺灣木本植物圖誌。國立臺灣大學農學院印行。 劉業經、呂福原、歐辰雄。1994。臺灣樹木誌。國立中興大學農學院叢書 pp. 308-311。 鍾年鈞。1995。臺大實驗林沙里仙區植群生態之研究(1)植群分析之研究。國立臺灣大學農學院實驗林研究報告,9(2):1-19。 簡龍祥。2002。台灣東北部瑪鋉溪流域植群生態之研究。國立台灣大學森林學研究所資源保育組碩士論文。 Agyeman, V. K., M. D. Swaine, and J. Thompson. 1999. Responses of tropical forest tree seedling to irradiance and the derivation of a light response index. Journal of Ecology 87: 815-824. Ashton, P. M. S., C. V. S. Gunatilleke, and Gunatilleke, I. A. U. N., 1995. Seedling survival and growth of four Shorea species in a Sri Lankan rainforest. Journal of Tropical Ecology 11: 263-279. Barnes, B.V., D. R. Zak, S. R. Denton, and S. H. Spurr. 1998. Forest Ecology 4thed. John Wiley, New York. Givnish, T. J. 1998. Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology 15: 63-92. Grime, J. P., and R. Hunt. 1975. Relative growth-rate: Its range and adaptive significance in a local flora. Journal of Ecology 63: 393-422. Hall, J., S. V. Medjibe, G. P. Berlyn, and P. M. S. Ashton. 2003. Seedling growth of three co-occurring Entandrophragma species (Meliaceae) under simulated light environments : implications for forest management in central Africa. Forest Ecology and Management 17: 135-144. Hoffmann, W. A. and H. Poorter, 2002. Avoiding bias in calculations of relative growth rate. Annals of Botany 80: 37-42. Hubbell, S. P., R. B. Foster, S. T. O’Brian, K. E. Harms, R. Condit, B. Wechsler, S. J. Wright, , and S. L. Lao. 1999. Light gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554-557. Hunt, R. 1982. Plant growth curves. Edward Arnold, London. Kitajima, K. 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98: 419-428. Kitajima, K., and B. M. Bolker. 2003. Crossovers in seedling relative growth rates between low and high irradiance: analyses and ecological potential. Functional Ecology 17: 276-287. Kozlowski, T. T., P. J. Kramer, and S. G. Pallardy. 1991. The Physiological Ecology of Woody Plants. Academic Press, New York. Montgomery, R. 2004. Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Tree Physiology 24: 155-167. Osunkoya, O. O., J. E. Ash, M. S. Hopkins, and A. W. Graham. 1992. Factors affecting survival of tree seedlings in northern Queensland. Oecologia 91: 568-578. Osunkoya, O. O., J. E. Ash, M. S. Hopkins, and A. W. Graham. 1994. Influence of seed size and seedling ecological attributes on shade tolerance of rain-forest tree species in northern Queensland. Jouranl of Ecology 82: 149-163. Poorter L. 1989. Interspecific variation in relative growth rate: on ecological causes and physiological consequences. In: Lambers et al. (eds). Causes and consequences of variation in growth rate and productivity of higher plants. The Hague, SPB Academic Publishing. pp. 45-68. Poorter, L. 1999. Growth responses of 15 rainforest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology 13: 396-410. Poorter, L. 2001. Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Functional Ecology 15: 113-123. Poorter, L., and S. F. Oberbauer. 1993. Photosynthetic induction responses of two rainforest tree species in relation to light environment. Oecologia 96: 193-199. Reich, P. B., M. G. Tjoelker, M. B.Walters, D. W. Vanderklein, and C. Bushena. 1998. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species growth in high and low light. Functional Ecology 12: 327-338. Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1992. Leaf lifespan in relation to leaf plant and stand characteristics among diverse ecosystem. Ecological Monographs 62: 365-392. Sack, L., and P. J. Grubb. 2001. Why do species of woody seedlings change rank in relative growth rate between low and high irradiance? Functional Ecology 15: 145-154. Sasaki, S , and T. Mori. 1981. Responses of seedling to light. Malayan Forester 44: 319-345. Schnitzer, S. A., and W. P. Carson. 2001. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82: 913-919. Sevnning, J. C. 2000. Small canopy gaps influence plant distributions in the rain forest understory. Biotropica 32 : 252-261. Silvertown, J. 2004. Plant coexistence and the niche. Trends in Ecology and Evolution 19: 605-611. Thomas, S. C., and F. A. Bazzaz. 1999. Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees. Ecology 80: 1607-1622. Walters, M. B., E. L. Kruger, and P. B. Reich. 1993a. Growth, biomass distribution and CO2 exchange of northern temperate hardwood seedlings in high and low light: Relationships with successional status and shade tolerance. Oecologia 94: 7-16. Walters, M. B., E. L. Kruger, and P. B. Reich. 1993b. Relative growth rate in relation to physiological and morphological traits for northern hardwood seedlings: species, light environment and ontogenetic considerations. Oecologia 96: 219-231. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35553 | - |
| dc.description.abstract | 中文摘要
本研究之目的在探討四種殼斗科樹種幼苗,毽子櫟、赤皮、錐果櫟及鬼櫟對光環境之適應性。藉觀察三種相對光度下,種子發芽後至九個月生長期間之相對生長率,評估試驗樹種之生長優勢是否會有轉變,並由生物量分配策略及形態表現來瞭解植物如何適應不同光環境。 以相對生長率判定四種樹種之生長優勢轉變,其發生時間約為生長五個月後且保持其優勢度。在高光下(相對光度80%)下,錐果櫟及赤皮相對生長率較高,在高光下較具有優勢;在中低光下(相對光度10% 及5% )下,則以毽子櫟及鬼櫟有較高相對生長率,此二種樹種在低光下較具有優勢。 光度與相對生長率之迴歸分析顯示,四樹種之相對生長率因光度增加而增加,錐果櫟與赤皮之相對生長率對於光度增加,呈線性反應,而毽子櫟與鬼櫟之相對生長率,則隨光度的增加而趨於平緩。 錐果櫟與赤皮之生物量,在高光下之累積遠大於中低光;對毽子櫟而言,中高光下生物量分配差異小,鬼櫟生物量在不同相對光度下仍有一定之累積量。 錐果櫟及赤皮苗高在相對光度80% 下較高,毽子櫟及鬼櫟苗高則在相對光度10% 下較高,表示毽子櫟及鬼櫟在低光下會以增加苗高而獲取更多光源。 錐果櫟、赤皮及鬼櫟在不同相對光度下,均以葉部生物量分配最多。毽子櫟生物量分配隨時間增加,以全方面發展並趨於一致,根莖葉分配比相近。 四種樹種之葉面積比與比葉面積皆隨著光度減少而增加,表示在低光下適應方式,以葉片變大變薄來增加獲取光源面積。各形態參數相關性分析顯示,相對生長率和葉面積比與比葉面積成負相關。葉部比和莖部比及根部比成負相關但和葉面積比成正相關。根部比和葉面積比和比葉面積成負相關。葉面積比和比葉面積成正相關。相對生長率為植物適應環境綜合表現的結果,此試驗中,並無法藉由形態上表現的參數作為很好的預測,此部分需待進一步研究。 由生長優勢轉變、相對生長率和光度的關係與苗高的反應,均可將四種樹種分為二群:(一)錐果櫟與赤皮在高光下較適合其生長,(二)毽子櫟與鬼櫟在中低光下生長較佳。驗證不同樹種對於光的適應性確實會不同,各樹種在不同光資源下會有生態棲位分化的現象。 關鍵詞: 相對生長率、相對光度、生長優勢 | zh_TW |
| dc.description.abstract | Abstract
To investigate whether crossover in seedling growth ranks among four potentially co-occurring Fagaceae species, namely, Cyclobalanopsis acuta var. paucidentata, Cyclobalanopsis longinux var. longinux, Cyclobalanopsis gilva, and Lithocarpus lepidocarpus would occur between low and high irradiance, the relative growth rates (RGR) of seedlings grown under three relative light intensities (5%, 10%, and 80% of full light) were determined over a period of 9 months. In addition, to understand the likely seedling adaptation strategies of the four species under different relative light intensities, seedling biomass allocation patterns and morphological attributes were also investigated. Results showed that the growth rank patterns were inconsistent among the four species during the first four months. However, from the fifth month and onward, Cyclobalanopsis longinux var. longinux and Cyclobalanopsis gilva had higher relative growth rates under 80% relative light intensity, whereas Cyclobalanopsis acuta var. paucidentata and Lithocarpus lepidocarpus had higher relative growth rates under both 10% and 5% relative light intensities. Thus, crossover in seedling growth ranks did occur among the four species. For Cyclobalanopsis acuta var. paucidentata and Lithocarpus lepidocarpus, their RGR’s showed a curvilinear response to the three relative light intensities, whereas for both Cyclobalanopsis longinux var. longinux and Cyclobalanopsis gilva, the responses were linear. For all the species, their seedlings biomass increased with increasing relative light intensity. Cyclobalanopsis longinux var. longinux and Cyclobalanopsis gilva had higher seedling height under 10% relative light intensity. In contrast, Cyclobalanopsis acuta var. paucidentata and Lithocarpus lepidocarpus had higher seedling height under lower relative light intensities. Regardless of relative light intensity, Cyclobalanopsis longinux var. longinux, Cyclobalanopsis gilva allocated more biomass toward the foliar component. In contrast, for Lithocarpus lepidocarpus, Cyclobalanopsis acuta var. paucidentata the biomass were equally partitioned among the foliar, stem, and root components. For the four species, leaf area ratio (LAR) and species leaf ratio (SLA) increased with decreasing relative light intensity. For all four species, RGR was negatively correlated with SLA and LAR. Based the responses to the three relative light intensities, the four species could be separated into two groups: Cyclobalanopsis longinux var. longinux and Cyclobalanopsis gilva could be considered as shade-intolerant species since they grew much better under high light environment than under low light environment; whereas Cyclobalanopsis acuta var. paucidentata and Lithocarpus lepidocarpus could be considered as shade-tolerant species since they still had good growth performance under relatively low light environment. This study suggested that one of the reasons that the four species could co-occur was in their abilities to differentiate along the light gradient. Keywords: Relative growth rate, relative light intensity, growth rank | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:58:09Z (GMT). No. of bitstreams: 1 ntu-94-R91625043-1.pdf: 668604 bytes, checksum: f6ca8308ce79ef6f51886c15608e8007 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目錄
中文摘要.............................................................................................…... i 英文摘要.............................................................................................…..iii 表目次………………………………………………………………...…vi 圖目次…………………………………………………………………..vii 壹、前言.....................................................................................................1 貳、前人研究…………………………………………………………....3 一、光度對林木個體發育的影響……………………………………3 二、光度對種間生長優勢的影響……………………………………3 三、光度對生物量分配的影響………………………………………6 四、試驗樹種特性及在台灣分佈……………………………………7 參、材料與方法.......................................................................................11 一、試驗樹種…………………………………………………………11 二、試驗設計…………………………………………………………15 三、環境變化…………………………………………………………18 肆、結果…………………………………………………………………24 一、生長優勢轉變…………………………………………………..24 二、生物量分配及形態表現………………………………………..33 伍、討論.............................................................................................…..53 一、種間相對生長率變化…………………………………………...53 二、生物量分配與形態表現………………………………………..56 陸、結論..............................................................................................….64 柒、參考文獻.....................................................................................…..65 表目次 表1、試驗樹種生態特性………………………………………………..8 表2、試驗樹種在台灣分布情形.............................................................10 表3、試驗樹種種子採集地點、時間與試驗播種粒數..........................11 表4、蔭棚內樹種配置情形....................................................................15 表5、蔭棚內溫濕度變化.................……………………………………19 表6、光度與後四期相對生長率分析之結果…………………………30 表7、中低光度與後四期相對生長率分析之結果……………………31 表8、不同相對光度與相對生長率之相關性分析.................................32 表9、相對生長率與生物量分配比之相關分析結果............................52 圖目次 圖1、2004年8月晴天及陰天光度之日域變化………………………20 圖2、2004年8月晴天及陰天溫度隨時間之日域變化………………21 圖3、2005年1月晴天及陰天光度隨時間變化之日域變化…………22 圖4、晴天及陰天溫度及濕度隨時間變化之日域變化………..……..23 圖5、各樹種前四期在不同光度下之相對生長率變化……….……...27 圖6、各樹種後四期在不同光度下之相對生長率變化……….……...28 圖7、光度與相對生長率後四期之關係……………………….……...30 圖8、中低光度與相對生長率後四期之關係………………………….31 圖9、四種樹種隨時間平均生物量變化……………….………………34 圖10、四種樹種在不同光度下苗高生長……………………..………37 圖11、四種樹種在不同光度下苗高生長比較……………………..…38 圖12、毽子櫟之各部位葉、莖、根比隨時間變化……………..………40 圖13、錐果櫟之各部位葉、莖、根比隨時間變化………………………41 圖14、赤皮之各部位葉、莖、根比隨時間變化……….…….…………43 圖15、鬼櫟之各部位葉、莖、根比隨時間變化………………..………44 圖16、各樹種葉莖根比在不同光度下分配比之比較…………………47 圖17、各樹種葉面積比隨時間變化......................................................49 圖18、各樹種比葉面積隨時間變化.....................................................50 圖19、各樹種於不同光度下葉面積比與比葉面積的表現…………..51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生長優勢 | zh_TW |
| dc.subject | 相對生長率 | zh_TW |
| dc.subject | 相對光度 | zh_TW |
| dc.subject | growth rank | en |
| dc.subject | relative light intensity | en |
| dc.subject | relative growth rate | en |
| dc.title | 四種殼斗科幼苗在不同光度下生長優勢與形態之表現 | zh_TW |
| dc.title | Growth Rank and Morphological Attributes of Four Fagaceae Species Seedlings Under Different Relative Light Intensities | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林世宗,郭耀綸,許博行,郭幸榮 | |
| dc.subject.keyword | 相對生長率,相對光度,生長優勢, | zh_TW |
| dc.subject.keyword | relative growth rate,relative light intensity,growth rank, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 652.93 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
