Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35544
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正弦
dc.contributor.authorPo-Tuan Chenen
dc.contributor.author陳柏端zh_TW
dc.date.accessioned2021-06-13T06:57:43Z-
dc.date.available2005-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citation[1] R. S. Berry in Nitrenes (edited: W Lwowdki), John Wiley & Sons Ltd, New York, p13 (1970)
[2] E. Wasserman, G. Smolinsky, and W. A. Yager, J. Am. Chem. Soc. 86, 3155 (1964)
[3] D. R. Yarkony, H. F. Schaefer III, and S. Rothenberg, J. Am. Chem. Soc. 96(19), 5974 (1974)
[4] J. Demuynck, D. J. Fox, Y. Yamaguchi, and H. F. Schaefer III, J. Am. Chem. Soc. 102(20), 6204 (1980)
[5] J. A. Pople, K. Raghavachari, M. J. Frisch, J. S. Binkley, and P. v.R. Schleyer, J. Am. Chem. Soc. 105(21), 6389 (1983)
[6] M. T. Nguyen, Chem. Phys. Lett. 117(3), 290 (1985)
[7] C. Richards, Jr., C. Meredith, S. J. Kim, G. E. Quelch, and H. F. Schaefer III, J. Chem. Phys. 100(1), 481 (1994)
[8] C. R. Kemnitz, G. B. Ellison, W. L. Karney, and W. T. Borden, J. Am. Chem. Soc. 122(6), 1098 (2000)
[9] P. G. Carrick and P. C. Engelking, J. Chem. Phys. 81(4), 1661 (1984)
[10] R. F. Ferrante, J. Chem. Phys. 86(1), 25 (1987)
[11] P. G. Carrick, C. R. Brazier, P. F. Bernath, and P. C. Engelking, J. Am. Chem. Soc. 109(17), 5100 (1987)
[12] E. L. Chappell and P. C. Engelking, J. Chem. Phys. 89(10), 6007 (1988)
[13] H. Shang, C. Yu, L. Ying, and X. Zhao, J. Chem. Phys. 103(11), 4418 (1995)
[14] L. Ying, Y. Xia, H. Shang, X. Zhao, and Y. Tang, J. Chem. Phys. 105(14), 5798 (1996)
[15] H. Shang, R. Gao, L. Ying, X. Zhao, and Y. Tang, Chem. Phys. Lett. 267, 345 (1997)
[16] C. R. Brazier, P. G. Carrick, and P. F. Bernath, J. Chem. Phys. 96(2), 919 (1992)
[17] Y. M. Xie, G. E. Scuseria, B. F. Yates, Y. Yamaguchi, and H. F. Schaefer, J. Am. Chem. Soc. 111(14), 5181 (1989)
[18] J. Wang, Z. Sun, X. Zhu, X. Yang, M. Ge, and D. Wang, Angew. Chem. Int. Ed. 40(16), 3055 (2001)
[19] S. Gronert, J. Am. Chem. Soc. 115(22), 10258 (1993)
[20] L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94(11), 7221 (1992)
[21] W. Erley, R. Xu, J. C. Hemminger, Surf. Sci. 389, 272 (1997)
[22] A. S. Y. Chan, J. Deiner, and C. M. Friend, J. Phys. Chem. B 106(51), 13318 (2002)
[23] P. Chuang, Y. L. Chan, C. H. Chuang, S. H. Chien, and T. J. Chuang, Appl. Surf. Sci. 169-170, 153, (2001)
[24] R. S. Zhai, Y. L. Chan, C. K. Hsu, P. Chuang, R. Klauser, and T. J. Chuang, ChemPhysChem 5, 1038 (2004)
[25] W. W. Pai, Y. L. Chan, and T. J. Chuang, Chin. J. Phys. 43(1-II), 212 (2005)
[26] P. S. Bagus, K. Hermann, and C. W. Bauschicher Jr., J. Chem. Phys. 81(4), 1966 (1984)
[27] J. M. Hu, Y. Li, J. Q. Li, Y. F. Zhang, and L. X. Zhou, Acta Chimica Sinica 61(4), 476 (2003)
[28] Y. Gauthier, M. Schmid, S. Padovani, E. Lundgren, V. Bus, G. Kresse, J. Redinger, and P. Varga, Phys. Rev. Lett. 87, 036103 (2001)
[29] Z. X. Chen, K. M. Neyman, K. H. Lim, and N. Rösch, Langmuir 20(19), 8068 (2004)
[30] M. C. Vargas, Revista Mexicana De Fisica 50(5), 536 (2004)
[31] M. Gajdos, A. Eichler, and J. Hafner, Phys. Rev. B 71, 035402 (2005)
[32] G. He, S. Li, and Z. Zhou, Surf. Sci. 553, 126 (2004)
[33] X. Wang, P. Selvam, Chen Lv, M. Kubo, and A. Miyamoto, J. Mol. Cat. A Chem. 220, 189 (2004)
[34] C. G. M. Hermse, A. P. v. Bavel, A. P. J. Jansen, L. A. M. M. Barbosa, P. Sautet, and R. A. v. Santen, J. Phys. Chem. B 108(30), 11035 (2004)
[35] B. L. Rogers, J. G. Shapter, and M. J. Ford, Surf. Sci. 548, 29 (2004)
[36] R. B. Randin, and D. S. Sholl, Surf. Sci. 548, 301 (2004)
[37] G. C. Wang, L. Jiang, Y. Morikawa, J. Nakamura, Z. S. Cai, Y. M. Pan, and X. Z. Zhao, Surf. Sci. 570, 205 (2004)
[38] S. Y. Liem, and J. H. R. Clarde, J. Chem. Phys. 121(9), 4339 (2004)
[39] G. C. Wang, L. Jiang, X. Y. Pang, Z. S. Cai, Y. M. Pan, X. Z. Zhao, Y. Morikawa, and J. Nakamura, Surf. Sci. 543, 118 (2003)
[40] D. D. Ariza, C. Sousa, N. M. Harrison, M. V. G. Pirovano, and F. Illas, Surf. Sci. 522, 185 (2003)
[41] C. G. P. M. Bernardo, and J. A. N. F. Gomes, J. Mol. Struct. 629, 251 (2003)
[42] J. M. Phillips, F. M. Leibsle, A. J. Holder, and T. Keith, Surf. Sci. 545, 1 (2003)
[43] C. G. P. M. Bernardo, and J. A. N. F, J. Mol. Struct. 582, 159 (2002)
[44] K. Itoh, T. Kiyohara, H. Shinohara, C. Ohe, Y. Kawamura, and H. Nakai, J. Phys. Chem. B 106(41), 10714 (2002)
[45] A. Szabo, and N. S. Ostlund, Modern Quantum Chemistry, McGraw-Hill, (1993)
[46] C. J. Cramer, Essentials of Computational Chemistry, John Wiley & Sons Ltd (2002)
[47] W. J. Hehre, L. Radom, P. v.R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley & Sons (1986)
[48] J. K. Labanowski, Simplified and Biased Introduction to Density Functional Approaches in Chemistry, http://www.ccl.net/chemistry/index.shtml (1996)
[49] A. D. Becke, J. Chem. Phys. 98, 5648 (1993)
[50] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1980)
[51] P. J. Hay, and W. R. Wadt, J. Chem. Phys. 82(1), 270 (1985)
[52] W. Xia, and H. Sellers, Surf. Sci. 524, 15 (2003)
[53] J. Robinson, and D. P. Woodruff, Surf. Sci. 498, 203 (2002)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35544-
dc.description.abstract我們使用量子化學的方法計算游離能。根據游離能計算的策略,我們定義了游離能為,將基態的分子游離的能量;而非穩定的基態與穩定的游離態的能量差。
應用此計算策略,我們以MP2、MP4、QCISD和G2+的方法,計算了三重態CH3N的游離能。與實驗觀測值比較,G2+方法可以得到最好的計算結果,進而可以判斷光電光譜上,每一個能量訊號所代表之離子態。離子態可以分子軌域表示,更可因此確認CH3N的電子組態。
電子組態可以輔助我們對CH3N的化學性質作假設,特別是CH3N在銅表面上的化學吸附。在台大凝態中心表面科學實驗室已進行一系列CH3N吸附在Cu(110)表面的實驗。為了解釋實驗觀測到原子級尺度的結果,我們以密度泛函理論,對CH3N吸附在Cu(110)表面做理論計算。我們以銅原子組成的團簇來模擬Cu(110)的表面,並以LANL2DZ的基底函數詮釋銅;同時以6-31G**的基底函數詮釋CH3N。將計算的結果與實驗結果作比較,我們討論CH3N吸附在Cu(110)表面的機制,是以共價鍵的方式鍵結。而離子性質影響了氫與銅間的作用力,會使得C-H的震動頻率分裂。
zh_TW
dc.description.abstractThe calculation of ionization energies has been performed by using quantum chemistry calculation methods. As a calculation strategy of ionization energies, we have defined that the ionization energies can be considered as how large energies can ionize the molecule, that is, this is not the simple energy difference between stable ground state and stable ionic states.
Using the strategy, we have calculated the ionization energies of triplet methylnitrene by applying MP2, MP4, QCISD, and G2+ methods; the G2+ method has shown a good agreement with the experimentally observed ionization energies and we have assigned the origin of the cation states appeared in a photoelectron spectrum [18]. The ionic states can be represented by molecular orbitals (MOs) and we have confirmed the electronic configuration of methylnitrene [1, 3].
The electronic configuration can allow us to assume the chemical properties of methylnitrene, especially for methylnitrene adsorbed on copper surface. There have been a series of experiments about CH3N chemical adsorbing on Cu(110) surface in surface science research group at National Taiwan University [23- 25]. In order to interpret the experimentally observed results in the atomic scale, we have performed the calculation of CH3N on Cu(110) using density functional theory (DFT). We have simulated the Cu(110) surface for various models of Cu cluster by adopting effective core potentials (ECPs), LANL2DZ; while the CH3N is treated with 6-31G** basis set. The calculated results of the cluster models are compared with the experimental results. Based on the comparison, we have discussed that the adsorption mechanism of CH3N on Cu(110) can be a formation of covalence bond between N and Cu, and the ionic properties can affect the H-Cu interaction that makes the degenerate C-H stretching vibrational frequencies split.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:57:43Z (GMT). No. of bitstreams: 1
ntu-94-R92222019-1.pdf: 1134278 bytes, checksum: 1e993419c62c4cf226a79f0bfa800588 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents
List of Tables …………………………………………………iv
List of Figures …………………………………………………v
Acknowledgement…………………………………………………vi
Abstract…………………………………………………………vii
中文摘要 ………………………………………………………viii

Chapter 1: Introduction ………………………………………1
1.1. Electron Configuration and Ionic State of Methylnitrene ……………………………………………………1
1.2. Methylnitrene Adsorbing on Copper Surface …………4

Chapter 2: Theoretical Background …………………………7
2.1. Ab Initio ……………………………………………………7
2.2. Schrödinger Equation and Electron Wavefunction …8
2.3. Hatree-Fock Method ………………………………………10
2.3.1. Hatree Approximation …………………………………10
2.3.2. Hatree-Fock ………………………… …………………12
2.3.3. Self Consistent Field ………………………………16
2.4. Density Functional Theory ……………………………17
2.4.1. Hohenberg and Kohn Theorems ………………………19
2.4.2. Kohn and Sham Method …………………………………23
2.4.3. Implementations of Kohn and Sham Method ………26
2.5. Perturbation Theory ……………………………………28
2.5.1. Rayleigh-Shrödinger Perturbation Theory ………28
2.5.2. Møller-Plesset Pertubation Theory ………………31
2.6. Ab Initio Basis Set ……………………………………34
2.6.1. Gaussian Type Orbitals ………………………………34
2.6.2. Spilt Valence Basis Set ………………………36
2.6.3. Polarization and Diffuse Basis Sets ……………36
2.6.4. Effective Core Potentials …………………………38

Chapter 3: Method ………………………………………………40
3.1. Methylnitrene Ionization ………………………………40
3.2. Methylnitrene Adsorbing on Copper(110) Surface …41

Chapter 4: Calculation Results and Discussion …………43
4.1. Ground State of Methylnitrene ………………………43
4.1.1. Geometry Optimization ………………………………43
4.1.2. Vibrational Frequencies ……………………………44
4.1.3. Electron Configuration ………………………………46
4.1.4. Charge Distribution and Dipole Moment …………47
4.2. Ionic State of Methylnitrene …………………………48
4.2.1 Analysis of Electron Configuration of Ionic State
…49
4.2.2. Ionization Energies with Relaxation Orbitals and Geometries …51
4.2.3. Ionization Energies with Fixed Geometries ……55
4.3. Single Methylnitrene on Clean Copper(110) Surface
…60
4.3.1. Jahn-Teller Theorem …………………………………61
4.3.2. Discussion of Copper Cluster Model ………………62
4.3.3. Adsorption Energies …………………………………66
4.3.4. Charge Distribution and Dipole Moment of M1Cu28
…68
4.3.5. Vibrational Frequencies of M1Cu28 ………………69
4.3.6. Analysis The Adsorption Mechanism…………………71

Chapter 5: Conclusion …………………………………………75

Reference ………………………………………………………82
dc.language.isoen
dc.subjectCH3Nzh_TW
dc.subject全使算zh_TW
dc.subject游離能zh_TW
dc.subject銅表面zh_TW
dc.subject吸附zh_TW
dc.subjectab initioen
dc.subjectadsorptionen
dc.subjectCu surfaceen
dc.subjectionization energyen
dc.subjectCH3Nen
dc.title全始算研究:CH3N游離能計算及CH3N化學吸附於銅(110)表面之理論分析zh_TW
dc.titleAb Initio Study: CH3N Ionization Energies Calculation and Theoretical Analysis of CH3N Chemical Adsorbing on Cu(110) Surfaceen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.coadvisor林倫年
dc.contributor.oralexamcommittee江志強
dc.subject.keyword全使算,游離能,銅表面,吸附,CH3N,zh_TW
dc.subject.keywordab initio,ionization energy,Cu surface,adsorption,CH3N,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved