請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35502完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許文翰 | |
| dc.contributor.author | Hsung-Feng Ting | en |
| dc.contributor.author | 丁曉楓 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:55:43Z | - |
| dc.date.available | 2010-08-01 | |
| dc.date.copyright | 2005-08-01 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-28 | |
| dc.identifier.citation | [1] C. S. Peskin, Flow patterns around heart valves : a numerical method, J. Comput. Phys., 10 (1972), pp.252-271
[2] D. Goldstein, R. Haandler, and L. Sirovich, Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105 (1993), pp. 354-336 [3] E. M. Saiki and S.Biringen, Numerical simulation of a cylinder in uniform flow : Application of a virtual boundary method, J. Comput. Phys., 123 (1996), pp. 450-465 [4] J. Mohd-Yusof, Combined immersed boundary/B-spline method for simulations of flows in complex geometries, CTR Annual Research Briefs, NASA Ames/Stanford University, (1997), pp. 317 [5] E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, Combined immersed-boundary methods for three dimensional complex flow simulations, J. Comput. Phys., 161 (2000), pp. 30-60 [6] T. Ye, R. Mittal, H. S. Udaykumar, and W. Shyy, An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. Comput. Phys., 156 (1999), pp. 209-240 [7] Jungwoo Kim, Dongjoo Kim, and Haecheon Choi, An immersed-boundary finite-volume method for simulations of flow in complex geometries , J. Comput. Phys., 171 (2001), pp. 132-150 [8] M. C. Lai and C. S. Peskin, An immersed boundary method with formal second order accuracy and reduced numerical viscosity, J. Comput. Phys., 160 (2000), pp. 705-719 [9] R. F. Warming, B. J. Hyette, The modified equation approach to the stability and accuracy analysis of finite-difference methods, J. Comput. Phys., 14 (1974), pp. 159-179 [10] C. W. Li and L. L. Wang, An immersed boundary finite difference method fo LES of flow around bluff shapes, Int. J. Numer. Meth. Fluids, 46 (2004), pp. 85-107 [11] A. L. F. Lima E Silva, A. Silverira-Neto, J.J.R. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. Comput. Phys., 189 (2003), pp. 351-370 [12] J. Park, K. Kwon, H. Choi, Numerical solutions of flow past a circular cylinder at Reynolds number up to 160, KSME Int. J., 12 (1998), pp. 1200 [13] S. C. R. Dennis, G. Chang, Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100, J. Fluid Mech., 42 (1970), pp. 471 [14] D. Calhoun, A cartesian grid method for solving the two-dimensional streamfunction-vorticity equaions in irregular regions, J. Comput. Phys., 176 (2002), pp. 231-275 [15] David Russell, Z. Jane Wang, A cartesian grid method for modeling multiple moving object in 2D incompressible viscous flow, J. Comput. Phys., 191 (2003), pp. 177-205 [16] B. Fornberg, A numerical study of steady viscous flow past a circular cylinder, J. Fluid Mech., 98 (1980), pp. 819-855 [17] C. H. K. Williamson, Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers, J. Fluid Mech., 206 (1989), pp. 579 [18] C. H. K. Williamson, Vortex dynamics in the cylinder wake, Ann. Rev. Fluid Mech., 28 (1996), pp. 477 [19] D. J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers, J. Fluid Mech., 6 (1959), pp. 547 [20] C. W. Hirt and B. W. Nichols, Volume of fluid (VOF) method for dynamics of free boundaries, J. Comput. Phys., 39 (1981), pp. 201-225 [21] D. Gueyffier, J. Lie, A. Nadim, R. Scardovelli, and S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152 (1999), pp. 423-456 [22] D. K. Gartling, A test problem for outflow boundary conditions-flow over a backward-facing step, Int. J. Numer. Meth. Fluids, 11 (1990), pp. 953-967 [23] Jayant Keskar, D. A. Lyn, Computational of a laminar backward-facing step flow at Re=800 with a spectral domain decomposition method, Int. J. Numer. Meth. Fluids, 29 (1999), pp. 411-427 [24] P. M. Gresho, D. K. Gartling, K. H. Winters, T. J. Garratt, A. Spence and J. W. Goodrich, Is the steady viscous incompressible two-dimensional flow over a backward-facing step at Re=800 stable?, Int. J. Numer. Methods Fluids, 17 (1993), pp. 501-541. [25] R. L. Sani and P. M. Gresho, Resume and remarks on the open boundary condition ministmposium, Int. J. Numer. Methods Fluids, 18 (1994), pp. 983-1008. [26] I. E. Barton, The entrance effect of laminar flow over a backward-facing step geometry, Int. J. Numer. Methods Fluids, 25 (1997), pp. 633-644. [27] M. T. Wang and T. W. H. Sheu, Implementation of a free boundary condition to Navier-Stokes equations, Int. J. Numer. Methods for Heart & Fluids Flow, 7 (1997), pp. 95-111 [28] S. Abide and S. Viazzo, A 2D compact fourth-order projection decomposition method, J. Comput. Phys., 206 (2005), pp. 252-276. [29] Zdravkovich M. M., Review of flow interference between two circular cylinders in various arrangements, J. Fluids Engineering, 99 (1977), pp. 618-633. [30] T. Farrant, M. Tan, W. G. Tan, A cell boundary element method applied to laminar vortex shedding from circular cylinders, Computers & Fluids, 30 (2001), pp. 211-236. [31] J. R. Meneghini, F. Saltara, C. L. R. Siqueira, and J. A. Ferrari JR, Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements, J. Fluids & Struct., 15 (2001), pp. 327-350. [32] H. Ding, C. Shu, K. S. Yeo, D. Xu, Simulation of incompressible viscous flows past a circular cylinder by hybird FD scheme and meshless least square-based finite difference method , Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 727-744. [33] D. Gordon, Numerical calculation on viscous flow fields through cylinder arrays, Computers & Fluids, 6 (1977), pp. 1-13. [34] Tony W. H. Sheu, R. K. Lin, Newton linearization on the incompressioble Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 44 (2004), pp. 297-312. [35] Tony W. H. Sheu, R. K. Lin, An incompressible Navier-Stokes model implemented on non-staggered grids, Numerical Heat Transfer, Part B: Fundamentals, 44 (2003), pp. 277-294. [36] T. Meis, U. Marcowitz, Numerical Solution of Partial Differential Equations, Vol. 22, (In Applied Mathematical Science, Springer-Verlag, 1981. [37] Tony W. H. Sheu, R. K. Lin, G. L. Liu, Development of continuity-preserving segregated method for incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, (in submission). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35502 | - |
| dc.description.abstract | In this thesis, a discrete-time direct forcing method in Cartesian grids is applied to the numerical simulation of the flow over a circular cylinder, flow over two cylinders in tandem, backward-facing step flow and flow over the label of 'SCCS'. A collocated finite-difference method for CDR (convection-diffusion-reaction) equation with nodally exact discrete scheme in non-staggered uniform Cartesian grids is used. The momentum forcing is applied on the body surface or inside the body to satisfy the no-slip boundary condition on the immersed boundary (body-fluid interface). For immersed boundary method, the choice of an accurate interpolation scheme satisfying the no-slip condition on
the immersed boundary is very important because the grid lines generally do not coincide with the immersed boundary. Therefore, a novel interpolation technique for evaluating the momentum forcing on the body surface or inside the body is presented. The benchmark problem of flow over a circular cylinder, is simulated using the proposed immersed boundary method. The results agree very well with other numerical and experimental results in the literatures. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:55:43Z (GMT). No. of bitstreams: 1 ntu-94-R92525003-1.pdf: 5521665 bytes, checksum: 99d7251c2b581c1dad284153d6178268 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Acknowledgements i
Abstract ii 1 Introduction 1 1.1 Research objectives(Background) 1 1.2 Governing equations 2 1.2.1 Governing equations for pure fluid 2 1.2.2 Governing equations for fluids in complex geometries 2 1.3 Literature review 3 1.4 Outlines of this study 5 2 Two-dimensional incompressible Navier-Stokes equations 6 2.1 Mathematical formulation 6 2.1.1 Generalized Navier-Stokes equation 6 2.1.2 Pressure Poisson Equation 7 2.1.3 Normalization 8 2.2 Discretization of equations on non-staggered grids 10 2.2.1 Five-point CDR scheme 11 2.2.2 Compact scheme 12 2.3 Numerical Studies 14 2.3.1 Validation for steady Navier-Stokes model 15 2.3.2 Validation for unsteady Navier-Stokes model 15 4 Immersed Boundary Method 20 4.1 Volume of fluid method 20 4.1.1 Volume-fraction field 21 4.1.2 Computational procedures 22 4.2 Direct forcing method 24 4.2.1 Momentum forcing 24 4.2.2 Interpolation method for the velocity 25 4.3 Extended direct forcing method 29 4.3.1 Interpolation method for the velocity 29 4.3.2 Computational procedures 30 5 Numerical Results 33 5.1 2-D flow over a circular cylinder 33 5.1.1 Computational domain and boundary condition 34 5.1.2 Results and discussion 35 5.2 2-D Flow over two cylinders in tandem 37 5.2.1 Computational Domain and Boundary Condition 38 5.2.2 Results and discussion 38 5.3 2-D backward facing-step flow 39 5.3.1 Computational Domain and Boundary Condition 40 5.3.2 Results and discussion 40 5.4 2-D flow over the label of 'SCCS' 41 5.4.1 Computational Domain and Boundary Condition 42 5.4.2 Results and discussion 42 6 Conclusion 77 | |
| dc.language.iso | en | |
| dc.subject | 不可壓縮黏性流 | zh_TW |
| dc.subject | 沉浸邊界方法 | zh_TW |
| dc.subject | 複雜外型 | zh_TW |
| dc.subject | Incompressible Viscous Flow | en |
| dc.subject | Complex Geometry | en |
| dc.subject | Immersed Boundary Method | en |
| dc.title | 以沉浸邊界方法求解具複雜外型之不可壓縮黏性流 | zh_TW |
| dc.title | Immersed Boundary Method for Solving Incompressible Viscous Flow Equations in Complex Geometry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔣德普,王明睿,蔡順?,王識貴 | |
| dc.subject.keyword | 沉浸邊界方法,複雜外型,不可壓縮黏性流, | zh_TW |
| dc.subject.keyword | Immersed Boundary Method,Complex Geometry,Incompressible Viscous Flow, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 5.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
