Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35482
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李士傑
dc.contributor.authorHui-Ting Changen
dc.contributor.author張惠婷zh_TW
dc.date.accessioned2021-06-13T06:54:48Z-
dc.date.available2006-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citationAbe, H., Obinata, T., Minamide, L.S. and Bamburg, J.R., 1996. Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development. J. Cell Biol. 132, 871-885.
Agnew, B.J., Minamide, L.S. and Bamburg, J.R., 1995. Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J. Biol. Chem. 270, 17582-17587.
Aizawa, H., Fukui, Y. and Yahara, I., 1997. Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles. J. Cell Sci. 110, 2333-2344.
Aizawa, H., Kishi, Y., Iida, K., Sameshima, M. and Yahara, I., 2001. Cofilin-2, a novel type of cofilin, is expressed specifically at aggregation stage of Dictyostelium discoideum development. Genes Cells 6, 913-921.
Bamburg, J.R. and Bray, D., 1987. Distribution and cellular localization of actin depolymerizing factor. J. Cell Biol. 105, 2817-2825.
Bamburg, J.R., 1999. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Ann. Rev. Cell Dev. Biol. 15, 185-230.
Bamburg, J.R. and Wiggan, O.P., 2002. ADF/cofilin and actin dynamics in disease. Trends Cell Biol. 12, 598-605.
Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
Bray, J.J., Fernyhough, P., Bamburg, J.R. and Bray, D., 1992. Actin depolymerizing factor is a component of slow axonal transport. J. Neurochem. 58, 2081-2087.
Burridge, K., 1999. Crosstalk between Rac and Rho. Science 283, 2028-2029.
Chhabra, D. and Dos Remedios, C.G., 2005. Cofilin, Actin and Their Complex Observed In Vivo Using Fluorescence Resonance Energy Transfer. Biophys. J. In press.
Cvrckova, F., Rivero, F. and Bavlnka, B., 2004. Evolutionarily conserved modules in actin nucleation: lessons from Dictyostelium discoideum and plants. Review article. Protoplasma 224, 15-31.
DesMarais, V., Ichetovkin, I., Condeelis, J. and Hitchcock-DeGregori, S.E., 2002. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J. Cell Sci. 115, 4649-4660.
Endo, M., Ohashi, K., Sasaki, Y., Goshima, Y., Niwa, R., Uemura, T. and Mizuno, K., 2003. Control of growth cone motility and morphology by LIM kinase and Slingshot via phosphorylation and dephosphorylation of cofilin. J. Neurosci. 23, 2527-2537.
Fernandez-Hernando, C., Suarez, Y. and Lasuncion, M.A., 2005. Lovastatin-induced PC-12 cell differentiation is associated with RhoA/RhoA kinase pathway inactivation. Mol. Cell Neurosci. 4, 591-602.
Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D.S. and Condeelis, J.S., 2004. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743-746.
Goldman, J.E., 1983. The association of actin with Hirano bodies. J. Neuropathol. Exp. Neurol. 42, 146-152.
Gunning, P.W., Schevzov, G., Kee, A.J. and Hardeman, E.C., 2005. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol. 15, 333-341.
Gurniak, C.B., Perlas, E. and Witke, W., 2005. The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev. Biol. 278, 231-241.
Hall, A., 1998. G proteins and small GTPases: distant relatives keep in touch. Science 280, 2074-2075.
Hanaoka, R., Ohmori, Y., Uyemura, K., Hosoya, T., Hotta, Y., Shirao, T. and Okamoto, H., 2004. Zebrafish gcmb is required for pharyngeal cartilage formation. Mech. Dev. 121, 1235-1247.
Hartwig, J.H., Bokoch, G.M., Carpenter, C.L., Janmey, P.A., Taylor, L.A., Toker, A. and Stossel, T.P., 1995. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82, 643-653.
Iida, K., Matsumoto, S. and Yahara, I., 1992. The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Struct. Funct. 17, 39-46.
Iida, K. and Yahara, I., 1999. Cooperation of two actin-binding proteins, cofilin and Aip1, in Saccharomyces cerevisiae. Genes Cells 4, 21-32.
Janmey, P.A. and Stossel, T.P., 1989. Gelsolin-polyphosphoinositide interaction. Full expression of gelsolin-inhibiting function by polyphosphoinositides in vesicular form and inactivation by dilution, aggregation, or masking of the inositol head group. J. Biol. Chem. 264, 4825-4831.
Kato, M., Miki, H., Imai, K., Nonoyama, S., Suzuki, T., Sasakawa, C. and Takenawa, T., 1999. Wiskott-Aldrich syndrome protein induces actin clustering without direct binding to Cdc42. J. Biol. Chem. 274, 27225-27230.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. and Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310.
Kondo, T., Shirasawa, T., Itoyama, Y. and Mori, H., 1996. Embryonic genes expressed in Alzheimer's disease brains. Neurosci. Lett. 209, 157-160.
Kuhn, T.B., Meberg, P.J., Brown, M.D., Bernstein, B.W., Minamide, L.S., Jensen, J.R., Okada, K., Soda, E.A. and Bamburg, J.R., 2000. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases. J. Neurobiol. 44, 126-144.
Lai, S.L., Chang, C.N., Wang, P.J. and Lee, S.J., 2005. Rho mediates cytokinesis and epiboly via ROCK in zebrafish. Mol. Reprod. Dev. 71, 186-196.
Lee, E., Pang, K. and Knecht, D., 2001. The regulation of actin polymerization and cross-linking in Dictyostelium. Biochim. Biophys. Acta 1525, 217-227.
Lee, H.T. and Kay, E.P., 2003. FGF-2 induced reorganization and disruption of actin cytoskeleton through PI 3-kinase, Rho, and Cdc42 in corneal endothelial cells. Mol. Vis. 9, 624-634.
Linder, S., Nelson, D., Weiss, M. and Aepfelbacher, M., 1999. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc. Natl. Acad. Sci. USA 96, 9648-9653.
Maciver, S.K. and Harrington, C.R., 1995. Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport 6, 1985-1988.
Maciver, S.K. and Hussey, P.J., 2002. The ADF/cofilin family: actin-remodeling proteins. Genome Biol. 3, reviews3007.
Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K. and Narumiya, S., 1999. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895-898.
Marlow, F., Topczewski, J., Sepich, D. and Solnica-Krezel, L., 2002. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876-884.
Martoglio, A.M., Tom, B.D., Starkey, M., Corps, A.N., Charnock-Jones, D.S. and Smith, S.K., 2000. Changes in tumorigenesis- and angiogenesis-related gene transcript abundance profiles in ovarian cancer detected by tailored high density cDNA arrays. Mol. Med. 6, 750-765.
Matsuzaki, F., Matsumoto, S., Yahara, I., Yonezawa, N., Nishida, E. and Sakai, H., 1988. Cloning and characterization of porcine brain cofilin cDNA. Cofilin contains the nuclear transport signal sequence. J. Biol. Chem. 263, 11564-11568.
McKim, K.S., Matheson, C., Marra, M.A., Wakarchuk, M.F. and Baillie, D.L., 1994. The Caenorhabditis elegans unc-60 gene encodes proteins homologous to a family of actin-binding proteins. Mol. Gen. Genet. 242, 346-357.
Meberg, P.J. and Bamburg, J.R., 2000. Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor. J. Neurosci. 20, 2459-2469.
Meng, Y., Zhang, Y., Tregoubov, V., Janus, C., Cruz, L., Jackson, M., Lu, W.Y., MacDonald, J.F., Wang, J.Y., Falls, D.L. and Jia, Z., 2002. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121-133.
Minamide, L.S., Striegl, A.M., Boyle, J.A., Meberg, P.J. and Bamburg, J.R., 2000. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat. Cell Biol. 2, 628-636.
Morgan, T.E., Lockerbie, R.O., Minamide, L.S., Browning, M.D. and Bamburg, J.R., 1993. Isolation and characterization of a regulated form of actin depolymerizing factor. J. Cell Biol. 122, 623-633.
Moriyama, K., Nishida, E., Yonezawa, N., Sakai, H., Matsumoto, S., Iida, K. and Yahara, I., 1990. Destrin, a mammalian actin-depolymerizing protein, is closely related to cofilin. Cloning and expression of porcine brain destrin cDNA. J. Biol. Chem. 265, 5768-5773.
Moriyama, K., Yonezawa, N., Sakai, H., Yahara, I. and Nishida, E., 1992. Mutational analysis of an actin-binding site of cofilin and characterization of chimeric proteins between cofilin and destrin. J. Biol. Chem. 267, 7240-7244.
Moriyama, K., Iida, K. and Yahara, I., 1996. Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1, 73-86.
Mouneimne, G., Soon, L., DesMarais, V., Sidani, M., Song, X., Yip, S.C., Ghosh, M., Eddy, R., Backer, J.M. and Condeelis, J., 2004. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166, 697-708.
Nagata-Ohashi, K., Ohta, Y., Goto, K., Chiba, S., Mori, R., Nishita, M., Ohashi, K., Kousaka, K., Iwamatsu, A., Niwa, R., Uemura, T. and Mizuno, K., 2004. A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. J. Cell Biol. 165, 465-471.
Nishida, E., Iida, K., Yonezawa, N., Koyasu, S., Yahara, I. and Sakai, H., 1987. Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc. Natl. Acad. Sci. USA 84, 5262-5266.
Nonoyama, S. and Ochs, H.D., 1998. Characterization of the Wiskott-Aldrich syndrome protein and its role in the disease. Curr. Opin. Immunol. 10, 407-412.
Ohta, Y., Nishida, E., Sakai, H. and Miyamoto, E., 1989. Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. J. Biol. Chem. 264, 16143-16148.
Ojala, P.J., Paavilainen, V. and Lappalainen, P., 2001. Identification of yeast cofilin residues specific for actin monomer and PIP2 binding. Biochemistry 40, 15562-15569.
Ono, S., Minami, N., Abe, H. and Obinata, T., 1994. Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle. J. Biol. Chem. 269, 15280-15286.
Ono, S. and Benian, G.M., 1998. Two Caenorhabditis elegans actin depolymerizing factor/cofilin proteins, encoded by the unc-60 gene, differentially regulate actin filament dynamics. J. Biol. Chem. 273, 3778-3783.
Ono, S., Baillie, D.L. and Benian, G.M., 1999. UNC-60B, an ADF/cofilin family protein, is required for proper assembly of actin into myofibrils in Caenorhabditis elegans body wall muscle. J. Cell Biol. 145, 491-502.
Ono, S. and Ono, K., 2002. Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics. J. Cell Biol. 156, 1065-1076.
Ostrowski, M., Grzanka, A. and Izdebska, M., 2005. [The role of actin in Alzheimer's disease]. Postepy Hig. Med. Dosw. (Online.) 59, 224-228.
Paavilainen, V.O., Bertling, E., Falck, S. and Lappalainen, P., 2004. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol. 14, 386-394.
Pope, B.J., Zierler-Gould, K.M., Kuhne, R., Weeds, A.G. and Ball, L.J., 2004. Solution structure of human cofilin: actin binding, pH sensitivity, and relationship to actin-depolymerizing factor. J. Biol. Chem. 279, 4840-4848.
Raftopoulou, M. and Hall, A., 2004. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23-32.
Samstag, Y., Dreizler, E.M., Ambach, A., Sczakiel, G. and Meuer, S.C., 1996. Inhibition of constitutive serine phosphatase activity in T lymphoma cells results in phosphorylation of pp19/cofilin and induces apoptosis. J. Immunol. 156, 4167-4173.
Sanger, J.W., Sanger, J.M., Kreis, T.E. and Jockusch, B.M., 1980. Reversible translocation of cytoplasmic actin into the nucleus caused by dimethyl sulfoxide. Proc. Natl. Acad. Sci. USA 77, 5268-5272.
Sarmiere, P.D. and Bamburg, J.R., 2004. Regulation of the neuronal actin cytoskeleton by ADF/cofilin. J. Neurobiol. 58, 103-117.
Schilling, T.F., Walker, C., and Kimmel, C.B., 1996. The chinless mutation and neural crest cell interactions in zebrafish jaw development. Development 122, 1417-1426.
Schuler, H., Mueller, A.K. and Matuschewski, K., 2005. A plasmodium actin-depolymerizing factor that binds exclusively to actin monomers. Mol. Biol. Cell . In press.
Sutton, T.A. and Molitoris, B.A., 1998. Mechanisms of cellular injury in ischemic acute renal failure. Semin. Nephrol. 18, 490-497.
Thirion, C., Stucka, R., Mendel, B., Gruhler, A., Jaksch, M., Nowak, K.J., Binz, N., Laing, N.G. and Lochmuller, H., 2001. Characterization of human muscle type cofilin (CFL2) in normal and regenerating muscle. Eur. J. Biochem. 268, 3473-3482.
Thisse, C., Thisse, B., Halpern, M.E. and Postlethwait, J.H., 1994. Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev. Biol. 164, 420-429.
Tojima, T. and Ito, E., 2004. Signal transduction cascades underlying de novo protein synthesis required for neuronal morphogenesis in differentiating neurons. Prog. Neurobiol. 72, 183-193.
Vartiainen, M.K., Mustonen, T., Mattila, P.K., Ojala, P.J., Thesleff, I., Partanen, J. and Lappalainen, P., 2002. The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics. Mol. Biol. Cell 13, 183-194.
Wu, Y.Q., Sutton, V.R., Nickerson, E., Lupski, J.R., Potocki, L., Korenberg, J.R., Greenberg, F., Tassabehji, M. and Shaffer, L.G., 1998. Delineation of the common critical region in Williams syndrome and clinical correlation of growth, heart defects, ethnicity, and parental origin. Am. J. Med. Genet. 78, 82-89.
Yonezawa, N., Nishida, E., Koyasu, S., Maekawa, S., Ohta, Y., Yahara, I. and Sakai, H., 1987. Distribution among tissues and intracellular localization of cofilin, a 21kDa actin-binding protein. Cell Struct. Funct. 12, 443-452.
Yonezawa, N., Nishida, E., Iida, K., Yahara, I. and Sakai, H., 1990. Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J. Biol. Chem. 265, 8382-8386.
Yonezawa, N., Homma, Y., Yahara, I., Sakai, H. and Nishida, E., 1991. A short sequence responsible for both phosphoinositide binding and actin binding activities of cofilin. J. Biol. Chem. 266, 17218-17221.
Zebda, N., Bernard, O., Bailly, M., Welti, S., Lawrence, D.S. and Condeelis, J.S., 2000. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J. Cell Biol. 151, 1119-1128.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35482-
dc.description.abstract肌動蛋白在真核生物中對細胞骨架組織重組佔有極重要地位,它可調控細胞活動力,細胞遷移,細胞膜變動和細胞質分裂。在動物胚發育過程中,細胞遷移和細胞質分裂則可影響細胞命運之決定和組織分化之過程。肌動蛋白細絲在生物體內有絲狀和球狀兩種,藉著聚合作用和去聚合作用,絲狀和球狀肌動蛋白細絲維持著一個動態平衡而調節細胞生理功能。
Cofilin 是一個約18 kDa 的肌動蛋白結合蛋白,它主要調控生物體內肌動蛋白去聚合作用,維持肌動蛋白絲動態平衡。在前人的研究中,cofilin 在不同的物種中皆存在,包括哺乳動物和植物,其具有兩種不同類型-非肌肉型和肌肉型,而在斑馬魚基因資料庫(NCBI database)中找到兩型cofilin,但其基因表現及功能卻尚未分析,因此我們利用RT-PCR分析,發現cofilin 在不同時期的斑馬魚胚皆有表現,而不同成魚組織中主要發現在肌肉、卵巢、精巢、腎和腸等組織中;更進一步利用原位雜合反應方法證明 cofilin 1 主要表現在表皮、鰓弓、脊椎神經、體節、胸鰭和原腎管;而cofilin 2 則主要表現在小腦、視網膜、中樞神經系統、胸鰭和原腎管。在功能性分析中,利用overexpression及Morpholino以降低cofilin 1 蛋白質生成,兩者均造成頭部輕微畸形,軀幹及尾部嚴重扭曲和鰓弓部份或全部的缺失。綜合以上的結果顯示,cofilin 1在斑馬魚胚發育與鰓弓,體軸形成及神經發育可能扮演重要的角色。
zh_TW
dc.description.abstractActin dynamics is of vital importance of cytoskeleton reorganization in eukaryotic organisms. Proper control of actin dynamics is necessary for regulating cell motility, cell migration, membrane ruffling and cytokinesis. Tightly control of cell migration and cytokinesis is a crucial for the determination of cell fate and tissue differentiation during embryonic development. Two types of actin, filamentous and globular actin, coexist in living cells. The equilibrium between filamentous and globular actin rely on the tightly regulated polymerization and depolymerization of filamentous actins.
Cofilins are actin binding proteins with a molecular weight around 18 kDa. By regulating actin assembly, cofilins are shown to be critical mediators in actin filament dynamics. Cofilins have been characterized in various organisms, including mammals and plants. In zebrafish, two cofilin isoforms, cofilin 1 and 2 have been registered in NCBI database. However, virtually no expression or functional assay regarding cofilins has been published in zebrafish. Here we show that both cofilin 1 and 2 are expressed in zebrafish embryos at all stages examined and they are ubiquitously transcribed in various adult tissues detected by RT-PCR analysis. Cofilins are highly expressed in muscle, ovary, testis, kidney and intestine. Furthermore, by whole-mount in situ hybridization analysis, it was demonstrated that Cofilin 1 is mainly expressed to the embryonic epidermis, branchial arches, spinal cord, pectoral fin, somite and pronephric duct and cofilin 2 is expressed to the cerebellum, retina, central neuron system, pectoral fin and pronephric duct. Overexpression and knockdown of cofilin 1 caused similar defects of brain, contortion of trunk and tail, and partial or complete missing of branchial arches. These results suggest that cofilin 1 is required for development of brain, branchial arches and body axis formation in zebrafish.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:54:48Z (GMT). No. of bitstreams: 1
ntu-94-R92b45005-1.pdf: 1401917 bytes, checksum: 56a9e495c1223e3156e3ac739701a741 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsACKNOWLEDGEMENTS………………………………………………………Ⅰ
LIST OF FIGURES…………………………………………………………………Ⅱ
ABSTRACT IN CHINESE…………………………………………………………Ⅲ
ABSTRACT…………………………………………………………………………Ⅳ
Introduction…………………………………………………………………………1
Materials and Methods………………………………………………………………6
Fish breeding and embryo collection………………………………………………6
RT-PCR analysis……………………………………………………………………6
Protein expression and purification…………………………………………………7
Plasmid construction for overexpressing GST-fusion protein in E.coli.………7
Expression and purification of the recombinant protein cofilin 1…………7
Gel electrophoresis and the determination of protein concentration……9
Whole-mount in situ hybridization…………………………………………………9
Morpholino antisense oligonucleotides and microinjection procedures…………10
Alcian blue skeletal staining………………………………………………………10
Embryo observations and photography……………………………………………11
Statistical analysis…………………………………………………………………11
Results………………………………………………………………………………12
Sequence and structure analyses of zebrafish cofilin 1 and 2………………12
Sequence and phylogenetic analyses of cofilin 1 and 2…………………………12
Expression of cofilins in the early embryos and the adult tissues…………………13
Expression of cofilins in situ during development………………………………14
Over-expressions of recombinant protein cofilin 1 during embryogenesis………15
Knockdown of cofilin 1 using morpholino antisense oligonucleotides……17
Morphology of branchial arches with cofilin 1 injected by alcian blue……18
Discussion……………………………………………………………………………19
References…………………………………………………………………………28

Figures………………………………………………………………………………41
dc.language.isoen
dc.subject鰓弓zh_TW
dc.subjectcofilinzh_TW
dc.subject斑馬魚zh_TW
dc.subject體軸形成zh_TW
dc.subject細胞骨架zh_TW
dc.subject去聚合作用zh_TW
dc.subjectbody axis formationen
dc.subjectdepolymerizationen
dc.subjectactin cytoskeletonen
dc.subjectzebrafishen
dc.subjectcofilinen
dc.subjectbranchial archesen
dc.titleCofilins在斑馬魚胚發育時期之基因表現及功能分析zh_TW
dc.titleGene Expression and Functional Analysis of Cofilins during Development in Zebrafish, Danio rerioen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.coadvisor廖文亮
dc.contributor.oralexamcommittee郭欽明,吳金冽,黃鵬鵬
dc.subject.keywordcofilin,斑馬魚,細胞骨架,去聚合作用,鰓弓,體軸形成,zh_TW
dc.subject.keywordcofilin,zebrafish,actin cytoskeleton,depolymerization,branchial arches,body axis formation,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved