請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35474
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭登貴 | |
dc.contributor.author | Hung-Yi Hsu | en |
dc.contributor.author | 許虹宜 | zh_TW |
dc.date.accessioned | 2021-06-13T06:54:26Z | - |
dc.date.available | 2005-08-01 | |
dc.date.copyright | 2005-08-01 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-28 | |
dc.identifier.citation | Adjaye, J., Daniels, R., Bolton, V. and Monk, M. (1997). cDNA libraries from single human preimplantation embryos. Genomics 46: 337-344.
Adjaye, J., Daniels, R. and Monk, M. (1998). The construction of cDNA libraries from human single preimplantation embryos and their use in the study of gene expression during development. J. Assist. Reprod. Genet. 15: 344-348. Aoki, F., Worrad, D.M. and Schultz, R.M. (1997). Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181: 296-307. Bachvarova, R. (1985). Gene expression during oogenesis and oocyte development in mammals. Dev. Biol. (NY 1985) 1: 453-524. Beddington, R. S. and Robertson, E. J. (1999). Axis development and early asymmetry in mammals. Cell 96: 195-209. Barlow, P., Owen D. A. and Graham. C. (1972). DNA synthesis in the preimplantation mouse embryo. J. Embryol Exp. Morphol. 27: 432-455. Behrens, J., von Kries, J.P., Kühl, M., Bruhn, L., Wedlich, D., Grosschedl, R. and Birchmeier, W. (1996). Functional interaction of -catenin with the transcription factor LEF-1. Nature 382: 638-642. Blum, M., De Robertis, E. M., Kojis, T., Heinzmann, C., Klisak, I., Geissert, D. and Sparkes, R. S. (1994). Molecular cloning of the human homeobox gene goosecoid (GSC) and mapping of the gene to human chromosome 14q32.1. Genomics 21: 388-393. Blum, M., Gaunt, S. J., Cho, K. W. Y, Steinbeisser, H., Blumberg, B., Bittner, D. and De Robertis, E. M. (1992). Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69: 1097-1106. Blumberg, B., Wright, C. V. E., De Robertis, E. M. and Cho, K. W. Y. (1991). Organizer-specific homeobox genes in Xenopus laevis embryos. Science 253: 194-196. Broun, M., Sokol, S. and Bode, H. R. (1999). Cngsc, a homologue of goosecoid, participates in the patterning of the head, and is expressed in the organizer region of Hydra. Development 126: 5245-5254. Brunner, E., Peter, O., Schweizer, L. and Basler, K. (1997). pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385: 829-833. Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. and Kimelman, D. (1997). β-catenin/XTcf-3 complex binds to siamois promoter to regulate dorsal axis specification in Xenopus. Genes. Dev. 11: 2359-2370. Burglin, T. R. (1994). A Caenorhabditis elegans prospero homologue defines a novel domain. Trends Biochem. Sci. 19: 70-71. Calarco, P. G. and Epstein, C. J. (1973). Cell surface changed during preimplantation development in the mouse. Dev. Biol. 32: 208-213. Carter, M.G., Hamatani, T., Sharov, A.A., Carmack, C.E., Qian, Y., Aiba, K., Ko, N.T., Dudekula, D.B., Brzoska, P.M., Hwang, S.S. and Ko, M.S.H. (2003). In situ-synthesized novel microarray optimized for mouse stem cell and early developmental expression profiling. Genome Res. 13: 1011-1021. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113: 643-55. Choo, K. B., Chen, H. H., Yi-Chen Liu, T. and Chang C. P. (2002). Different modes of regulation of transcription and pre-mRNA procession of the structurally juxtaposed homologs, Rnf33 and Rnf35, in eggs and in pre-implantation embryos. Nucleic Acids Research 30: 4836-4844. Cho, K. W., Blumberg, B., Steinbeisser, H. and De Robertis, E. M. (1991). Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67: 1111-1120. Dale, L., Howes, G., Price, B. M. J. and Smith, J. C. (1992). Bone Morphogenetic Protein 4: a ventralizing factor in Xenopus development. Development 115: 573-585. Demidenko, Z., Badenhorst, P., Jones, T., Bi, X. and Mortin, M. A. (2001). Regulated nuclear export of the homeodomain transcription factor Prospero. Development 128: 1359-1367. Deschamps J., van den Akker, E., Forlani, S., De Graaff, W., Oosterveen, T., Roelen, B. and Roelfsema, J. (1999). Initiation, establishment and maintenance of Hox gene expression patterns in the mouse. Int. J. Dev. Biol. 43: 635-650. De Robertis, E. M., Larrain, J., Oelgeschlager, M. and Wessely, O. (2000). The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat. Rev. Genet. 1: 171-181. De Robertis, E. M., Fainsod, A., Gont, L. K. and Steinbeisser, H. (1994). The evolution of vertebrate gastrulation. Development 120: 117-124. Doe, C. Q., Chu-LaGraff, Q., Wright, D. M. and Scott, M. P. (1991). The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65: 451-464. Dominguez, I., Itoh, K. and Sokol, S.Y. (1995). Role of glycogen synthase kinase 3 as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc. Natl. Acad. Sci. 92: 8498-8502. Ducibella, T. and Anderson, E. (1975). Cell shape and membrane changes in the eight-cell mouse embryo: Prerequisites for morphogenesis of the blastocyst. Dev. Biol. 47: 45-58. Engleka, M. J. and Kessler, D. S. (2001). Siamois cooprerated with TGFβ signals to induce the complete function of the Spemann-Mangold Oranizer. Int. J. Dev. Biol. 45: 241-250. Fan, M. J. and Sokol, S. Y. (1997). A role for Siamois in Spemann organizer formation. Development (Cambridge, U.K.) 124: 2581-2589. Fischer, U., Huber, J., Boelens,W. C., Mattaj., I. W. and Lührmann, R. (1995). The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82: 475–483. Fleming, T. P. (1987). A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev. Biol. 119: 520-531. Fleming, T. P., Sheth, B. and Fesenko, I. (2001). Cell allocation to trophectoderm and inner cell mass in the mouse embryo. Dev. Biol. 119: 520-531. Fornerod, U., Ohno, M., Yoshida, M. and Mattaj, I. W. (1997). CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90: 1051-1060. Fukuda, M., Asano, S., Nakamura, T., Adachi, M., Yoshida, M., Yanagida, M. and Nishida, E. (1997). CRM-1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390: 308-311. Funayama, N., Fagotto, F., McCrea, P. and Gumbiner, B.M. (1995). Embryonic axis induction by the Armadillo repeat domain of -catenin: Evidence for intracellular signaling. J. Cell Biol. 128: 959-968. Gardner, R. L. (1968). Mouse chimeras obtained by injection of cells into the blastocyst. Nature 220: 596-597. Gardner, R. L., Papaioannou, V. E. and Barton, S. C. (1973). Origin of the ectoplacental cone and secoindary giant cells in mouse blastocysts reconstituted from isolated trophoblast and inner cell mass. J. Embryo Exp. Morphol. 30: 5641-5672. Gardner, R. L. (2001). Specification of embryonic axes begins before cleavage in normal mouse development. Development 128: 839–847. Gaunt, S. J., Blum, M. and De Robertis, E. M. (1993). Expression of the mouse goosecoid gene during mid-embryogenesis may mark mesenchymal cell lineages in the developing head, limbs and ventral body wall. Development 117: 769-778. Guger K. A. and Gumbiner, B. M. (2000). A mode of regulation of beta-catenin signaling activity in Xenopus embryos independent of its levels. Dev. Biol. 223: 441-448. Gulays, B. J. (1975). A reexamination of the cleavage patterns in eutherian mammalian eggs: Rotation of the blastomere pairs during second cleavage in the rabbit. J. ExP. Zool. 193: 235-248. Goriely, A., Stella, M., Coffinier, C., Kessler, D., Mailhos, C., Dessain, S. and Desplan, C. (1996). A functional homologue of goosecoid in Drosophila. Development 122: 1641-1650. Hamatani, T., Carter, M. G., Sharov, A. A. and Ko, M. S. (2003). Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6: 117-31. Hartwell L. H., Hood, L., Goldberg, M. L., Reynolds, Ann E., Silver, L. M. and Veres, R. C. (2000). Drosophila melanogaster : genetic portrait of the fruit fly. Genetics from genes to genomes. 702-730. Hecht, A. and Kemler, R. (2000). Curbing the nuclear activities of beta-catenin. Control over Wnt target gene expression. EMBO Rep. 1: 24-28. Harland, R. and Gerhart, J. (1997). Formation and function of Spemann’s organizer. Annu. Rev. Cell Dev. Biol. 13: 611-667. He, X., Saint-Jeannet, J. P., Woodgett, J.R., Varmus, H.E. and Dawid, I. (1995). Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374: 617-622. Heasman, J., Crawford, A., Goldstone, K., Garner-Hamrick, P., Gumbiner, B., McCrea, P. Kintner, C. Noro, C.Y. and Wylie, C. (1994). Overexpression of cadherins and underexpression of -catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79: 791-803. Hillman, N., Sherman, M. L. and Graham, C. (1972). The effect of spatial arrangement on cell determination during mouse development. J. Embryol Exp. Morphol. 28: 263-278. Hirata, J., Nakagoshi, H., Nabeshima, Y. I. and Matsuzaki, F. (1995). Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377: 627-630. Hwang, S. Y., Oh, B., Knowles, B. B., Solter, D. and Lee, J. S. (2001). Expression of genes involved in mammalian meiosis during the transition from egg to embryo. Mol. Reprod. Dev. 59: 144-158. Huelsken, J. and Birchmeier, W. (2001). New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11: 547-553. Huber, O., Korn, R., McLaughlin, J., Ohsugi, M., Herrmann, B.G. and Kemler. R. (1996). Nuclear localization of -catenin by interaction with transcription factor LEF-1. Mech. Dev. 59: 3-10. Izpisua-Belmonte, J. C., De. Robertis, E. M., Storey, K. G. and Stern, C. D. (1993). The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74: 645-659. Johnson, M. H., Maro, B. and Takeichi, M. (1986). The role of cell adhesion in the synchronization and orientation. J. Embryol Exp. Morphol. 93: 239-255. Kanka, J. (2003). Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology 59: 3-19. Kaffman, A. and O'Shea, E. K. (1999). Regulation of nuclear localization: a key to a door. Annu. Rev. Cell Dev. Biol. 15: 291-339. Kessler, D. S. (1997). Siamois is required for formation of Spemann's organizer. Proc. Natl. Acad. Sci. USA 94: 13017-13022. Kidder, G. M. (1992). The genetic program for preimplantation development. Dev. Genet. 13: 319-325. Knowles, B. B., Evsikov, A. V., De Vries, W. N., Peaston, A. E. and Solter, D. (2003). Molecular control of the oocyte to embryo transition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358: 1381-1388. Kuhl, M., Sheldahl, L.C., Park, M., Miller, J.R. and Moon, R.T. (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16: 279–283. Latham, K. E. and Schultz, R. M. (2001). Embryonic genome activation. Front. Biosci. 6: 748-759. Latham, K. E., Garrels, J. I., Chang, C. and Solter, D. (1991). Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one-and two-cell stages. Development 112: 921-932. Larabell, C.A., Torres, M., Rowning, B.A., Yost, C., Miller, J. R. Wu, M., Kimelman, D. and Moon. R. T. (1997). Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in -catenin that are modulated by the Wnt signaling pathway. J. Cell Biol. 136: 1123-1136. Laurent, M. N., Blitz, I. L., Hashimoto, C., Rothbächer, U. and Cho, K. W. Y. (1997). The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer. Development (Cambridge, U.K.) 124: 4905-4916. Lemaire, P., Garrett, N. and Gurdon, J. B. (1995). Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81: 85-94. Lemaire, P. and Kodjabachian, L. (1996). The vertebrate organizer: structure and molecules. Trends Genet. 12: 525-531. Lonai, P. and Orr-Urtreger, A. (1990). Homeogenes in mammalian development and the evolution of the cranium and central nervous system. FASEB J . 4: 1436-1443. Lloyd, S., Fleming, T. P. and Collins, J. E. (2003) . Expression of Wnt genes during mouse preimplantation development. Gene Expr. Patterns 3: 309-312. Matsuzaki, F., Koizumi, K., Hama, C., Yoshioka, T. and Nabeshima, Y. I. (1992). Cloning of the Drosophila Prospero gene and its expression in ganglion mother cells. Biochem. Biophys. Res. Commun. 182: 1326-1332. Marra, M., Hillier, L., Kucaba, T., Allen, M., Barstead, R., Beck, C., Blistain, A., Bonaldo, M., Bowers, Y., Bowles, L. et al. (1999). An encyclopedia of mouse genes. Nat. Genet. 21: 191-194. McMahon, A. P. and Moon, R. T. (1989). Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58: 1075-1084. Meijer H. A., Van De Pavert S. A., Stroband, H. W. and Boerjan, M. L. (2002). Expression of the organizer specific homeobox gene goosecoid (gsc) in porcine embryos. Mol. Reprod. Dev. 55: 1-7. Miller, J. R. and Moon, R. T. (1996). Signal transduction through -catenin and specification of cell fate during embryogenesis. Genes & Dev. 10: 2527-2539. Miller, J. R. (2001). The Wnts. Genome Biol. 3: REVIEWS3001.1-3001.1S. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M. and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113: 631-42. Molenaar, M., Wetering, M. van de., Oosterwegel, M., Peterson-Maduro, J., Godsave, S., Korinek, V., Roose, J., Destrée, O. and Clevers, H. (1996). XTcf-3 transcription factor mediates -catenin-induced axis formation in Xenopus embryos. Cell 86: 391-399. Nothias, J. Y., Majumder, S., Kaneko, K. J. and DePamphilis, M. L (1995). Regulation of gene expression at the beginning of mammalian development. J. Biol. Chem. 270: 22077-22080. Nieto, M. A. (1999). Reorganizing the organizer 75 years on. Cell 98: 417-425. Otting, G., Qian, Y. Q., Billeter, M., Muller, M., Affolter, M., Gehring, W. J. and Wuthrich, K. (1990). Protein-DNA contacts in the structure of a nuclear magnetic resonance spectroscopy in solution. EMBO J. 9: 3085-3092. Papaioannou, V. E. (1982). Lineage analysis of inner cell mass and trophectoderm using microsurgically reconstituted mouse blastocyst. J. Embryol Exp. Morphol. 68: 199-209. Peyrieras, N., Hyafil, F., Louvard, D., Ploegh, H. L. and Jacob, F. (1983). Uvomorulin: a non-intergral membrane protein of early mouse embryos. Proc. Natl. Acad. Sci. USA 80: 6274-6277. Pierce, S. B. and Kimelman. D. (1995). Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121: 755-765.Piko, L. and Clegg, K. B. (1982). Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos. Dev. Biol. 89: 362-378. Piotrowska, K. and Zernicka-Goetz, M. (2001). Role for sperm in spatial patterning of the early mouse embryo. Nature 409: 517-521. Piotrowska, K., Wianny, F., Pedersen, R. A. and Zernicka-Goetz, M. (2001). Blastomeres arising from the first cleavage division have distinguishable fates in normal mouse development. Development 128: 3739-3748. Prather, R. S., Hagemann, L. J. and First, N. L. (1989). Preimplantation mammalian aggregation and injection chimeras. Gamete. Res. 22: 233-247. Percival-Smith, A., Muller, M., Affolter, M. and Gehring, W. J. (1990). The interaction with DNA of wild-type and mutant fushi tarazu homeodomains. EMBO J. 9: 3967-3974. Rivera-Perez, J. A., Mallo, M., Gendron-Maguire, M., Gridley, T. and Behringer, R. R. (1995). Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development 121: 3005-3012. Richards, S. A., Carey K. L. and Macara, I. G. (1997). Requirement of guanosine triphosphate-bound Ran for signal-mediated nuclear protein export. Science 276: 1842–1848. Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S. and Polakis, P. (1996). Binding of GSK3 to the APC- -catenin complex and regulation of complex assembly. Science 272: 1023-1026. Rothstein, J. L., Johnson, D., DeLoia, J. A., Skowronski, J., Solter, D. and Knowles, B. (1992). Gene expression during preimplantation mouse development. Genes Dev. 6: 1190-1201. Sasaki, N., Nagaoka, S., Itoh, M., Izawa, M., Konno, H., Carninci, P., Yoshiki, A., Kusakabe, M., Moriuchi, T., Muramatsu, M. et al. (1998). Characterization of gene expression in mouse blastocyst using single-pass sequencing of 3995 clones. Genomics 49: 167-179. Schultz, G. A. and Heyner, S. (1992). Gene expression in pre-implantation mammalian embryos. Mutat. Res. 296: 17-31. Schneider, S., Steinbeisser, H., Warga, R. M. and Hausen, P. (1996). -Catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57: 191-198. Schultz, R. M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. 8: 323-331. Schultz, R. M (1993). Regulation of zygotic gene activation in the mouse. Bio. Essays. 15: 531-538. Schulte-Merker, S., Hammerschmidt, M., Beuchle, D., Cho, K. W. Y., De Robertis, E. M. and Nusslein-Volhard, C. (1994). Expression of zebrafish Goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 120: 843-852. Spemann, H. and Mangold, H. (1924). Uber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren. Arch. mikr. Anat. EntwMech. 100: 599-638. Stachel, S. E., Grunwald, D. J. and Myers, P. (1993). Lithium perturbation and Goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117: 1261-1274. Sterm C. D. and Keynes, R. J. (1988). Spatial patterns of homeobox gene expression in the developing mammalian CNS. Trends Neurosci . 11: 190-192 Sharov, A. A., Piao, Y., Matoba, R., Dudekula, D. B., Qian, Y., VanBuren, V., Falco, G., Martin, P. R., Stagg, C. A., Bassey, U. C. et al. (2003). Transcriptome analysis of mouse stem cells and early embryos. Plos. Biol. 1(3): E74. Schena, M., Shalon, D., Davis, R.W. and Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470. Schultz, G. A. and Heyner, S. (1992). Gene expression in pre-implantation mammalian embryos. Mutat. Res. 296: 17-31. Shi, C. Z., Collins, H. W., Garside, W. T., Buettger, C. W., Matschinsky, F. M. and Heyner, S. (1994). Protein databases for compacted eight-cell and blastocyst-stage mouse embryos. Mol. Reprod. Dev. 37: 34-47. Siegfried, E., Wilder, E. L. and Perrimon, N. (1994). Components of wingless signaling in Drosophila. Nature 367: 76-80. Steinbeisser, H., De. Robertis, E. M., Ku, M., Kessler, D. S. and Melton, D. A. (1993). Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs. Development 118: 499-507. Spana, E. and Doe, C. Q. (1995). The Prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121: 3187-3195. Stade, K., Ford, C. S., Guthrie, C. and Weis, K. (1997). Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90: 1041-1050. Taylor, K. D. and Piko, L. (1987). Patterns of mRNA prevalence and expression of B1 and B2 transcripts in early mouse embryos. Development 101: 877-892. Thompson, E. M., Legouy, E. and Renard, J. P. (1998). Mouse embryos do not wait for the MBT: chromatin and RNA remodeling in genome activation at the onset of development. Genet. 22: 31-42. Vaessin, H., Grell, E., Wolff, B., Bier, E., Jan, L. Y. and Jan, Y. N. (1991). prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67: 941-953. Vollmer, J. Y. and Clerc, R. G. (1998). Homeobox genes in the developing mouse brain. J. Neurochem. 71: 1-19. Watabe, T., Kim, S., Candia, A., Rothbacher, U., Hashimoto, C., Inoue, K. and Cho, K. W. Y. (1995). Molecular mechanisms of Spemann's organizer formation: Conserved growth factor synergy between Xenopus and mouse. Genes & Dev. 9: 3038-3050. Wang, S.H., Tsai, M. S., Chiang, M. F., Li, H. (2003). A novel NK-type homeobox gene, ENK (early embryo specific NK), preferentially expressed in embryonic stem cells. Gene Expr. Patterns 3: 99-103. Watson, A. J., Kidder, G. M. and Schultz, G. A. (1992). How to make a blastocyst. Biochem. Cell Biol. 70: 849-855. Wassarman, P. M. and Kinloch, R. A. (1992). Gene expression during oogenesis in mice. Mutat. Res. 296: 3-15. Wen, W., Meinkoth, J. L., Tsien, R. Y. and Taylor, S. S. (1995). Identification of a signal of rapid export of proteins from the nucleus. Cell 82: 463-473. Wetering. van de, M., Cavallo, R., Dooijes, D., van Beest, M., van Es, J., Loureiro, J., Ypma, A., Hursh, D., Jones, T., Bejsovec, A., et al. (1997). Cell 88: 789-799. Wilson, D., Sheng, G., Lecuit, T., Dostatni, N. and Desplan, C. (1993). Cooperative dimerization of Paired class homeodomains on DNA. Genes Dev. 7: 2120-2134. Wieschaus, E. (1996). Embryonic transcription and the control of developmental pathways. Genetics 142: 5-10. Wodarz, A. and Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14: 59–88. Yamada, G., Mansouri, A., Torres, M., Stuart, E. T., Blum, M., Schultz, M., De Robertis, E. and Gruss, P. (1995). Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development 121: 2917-2922. Yao, J. and Kessler, D. S. (2001). Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann's organizer. Development 128: 2975-2987. Yost, C., Torres, M., Miller, J.R., Huang, E., Kimelman, D. and Moon, R. T. (1996). The axis-inducing activity, stability, and subcellular distribution of -catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes & Dev. 10: 1443-1454. Zeng, F. and Schultz, R. M. (2003). Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes. Biol. Reprod. 68: 31-39. Zhu, C.C., Yamada, G., Nakamura, S., Terashi, T., Schweickert, A. and Blum, M. (1998). Malformation of trachea and pelvic region in goosecoid mutant mice. Dev. Dyn. 211: 374-381. Ziomek, C. A. and Johnson, M. H. (1987). cell pollyrity in the preimplantation mouse embryo. In : The mammalian preimplantation embryo. B. D. Bavister, ed. Plenum Publishing Corp., New York, pp. 23-41. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35474 | - |
dc.description.abstract | 本研究旨在針對特異性表現於早期胚發育之同源框基因進行選殖,並探討其表現之分子調控機制。初始試驗首先經由小鼠囊胚cDNA基因庫之EST株系,初步篩選八個可能涉及早期胚胎發育有關之基因,進一步應用RT-PCR方式分析各基因之mRNA於埋殖前階段之胚、埋殖後之胚胎、及正常組織之表現輪廓(expressioin profile),經由RT-PCR分析顯示,goosecoid-2基因轉錄物在胚胎發育過程中,特異性表現於埋殖前階段,尤其是雙細胞至囊胚階段,當胚胎進入埋殖後則偵測不到基因轉錄物之表現,正常組織中goosecoid-2基因轉錄物於眼睛之表現量最高,而少部份表現於睪丸。
本研究之後續試驗,進行goosecoid-2全長cDNA之選殖,啟動子區域之選殖、及蛋白質定域特性分析,並針對其分子調控機制加以探討。goosecoid-2同源框基因全長7854bp,編碼為五個表現子,位於第七染色體上。goosecoid-2 編碼序列全長為741bp,經轉譯作用為247個胺基酸,其具有兩個同源框序列,分別位在核苷酸位置46~210及350~542處。另外,核苷酸位置在487~537及658~687序列,具有入核序列(nuclear localization signal, NLS)及出核序列(nuclear export signal, NES)序列。將全長goosecoid-2架構至pEGFP-C1表現載體,並轉染於TM3細胞株,發現Goosecoid-2蛋白質大部份表現於細胞質,此現象和一般轉錄因子的表現不一樣,推測細胞內分佈可能用來調控此轉錄因子之活性。將goosecoid-2的NES及NLS序列各別進行刪除且架構於pEGFP-C1表現載體上,經由轉染至TM3細胞株顯示,刪除NLS序列之Goosecoid-2蛋白質,僅表現於細胞質之部位; 刪除NES序列後之 Goosecoid-2蛋白質僅表現於細胞核。經由以上試驗結果證實,Goosecoid-2藉由NLS序列引導Goosecoid-2蛋白質由細胞質輸入細胞核內,並經由NES序列,引導Goosecoid-2蛋白質輸出細胞核外。 此外,為謀了解goosecoid-2轉錄活性之分子調控機制,進一步選殖及定序全長6Kb之goosecoid-2啟動子區域,且分析goosecoid-2基因上游-1.5Kb之啟動子區域內,具有三個β-catenin/TCF之保守性結合位置。將goosecoid-2基因啟動子與β-catenin同時轉染於TM3細胞株時,goosecoid-2啟動子之作用活性增加16倍。此試驗顯示,β-catenin/TCF直接活化goosecoid-2基因之轉錄活性。 在本篇論文中,除了證實goosecoid-2基因可經由β-catenin/TCF來調控其轉錄活性外,亦證實goosecoid-2同源框基因為同時具有NLS及NES序列之穿梭蛋白(shuttle protein),其藉由NES序列NLS序列穿梭於細胞核及細胞質之間,藉此特性調節基因之轉錄作用。goosecoid-2基因轉錄物局限表現於早期胚階段,在正常組織中僅表現於眼睛及少部份之睪丸組織,其在生理學功能可能扮演之意義為何,值得未來進一步應用conditional knock-down或是conditional knock-out策略詳加探討。 | zh_TW |
dc.description.abstract | The purposes of the present studies were to identify those homeobox genes predominantly expressed during early stages of embryonic development in the mice and to elucidate their molecular mechanisms related to regulations of gene expression.
To meet the purposes described above, mouse blastocyst cDNA library was firstly constructed and a total of eight candidate genes were successfully screened in silico, based on the EST databases. Each of the candidate genes was subsequently subjected to the RT-PCR analysis for further characterization of their expression profile in mouse embryos varying in stages of early development and adult mouse tissues. From these initially studies, a novel homeobox gene, named goosecoid-2, was identified and characterized to be specifically expressed early in two-cell up to blastocyst stages before the implantation occurred. In those adult mouse tissues analyzed, however, the expression of goosecoid-2 was constantly evidenced in eyes while a much lesser extent of its transcripts could be found in testes. In the subsequent studies, experiments were addressed on the cloning, sequencing, and characterization of the full length cDNA of goosecoid-2 and its potential promoter region. From these series studies, it was confirmed that the complete sequences of goosecoid-2 cDNA is lengthen in 741bp, encoding with a protein comprised 246 amino acids. Two homeoboxes were identified to be located at nucleotides 46~210 and 350~542, respectively. While a surprising result was observed in the initial experimental result, of that the goosecoid-2 protein was primarily presented in the cytoplasm when the fusion gene containing the full coding sequences of goosecoid-2 and EGFP, driven by the CMV promoter, had been transfected into the TM3 cells. However, in the later experiments conducted to verify the effect of goosecoid-2 coding sequences affect the localization of goosecoid-2 protein, it was found that a partial deletion of the goosecoid-2 coding sequences at either 487~537 or 658~687 nucleotides would result in significant discrepancies in their protein localization, showing the former ones only expressed in the cytoplasm whereas the later ones only expressed in the nuclei. These results indicate that the goosecoid-2 coding sequences possess both of a nuclear localization signal (NLS) and a nuclear export signal (NES), located at 487~537 and 658~687 nucleotides region, respectively. For further elucidation the molecular mechanisms related to regulations of transcriptional activity of goosecoid-2, a 6 kb in length of goosecoid-2 promoter was cloned and sequenced. Of these studies, a total of five β-catenin/TCF consensus binding sites were found to be distributed within -1.5 Kb of the goosecoid-2 promoter region. Cotransfection of CMV-β-catenin and goosecoid-2-luciferase into TM3 cells further evidenced that a 16-fold higher of luciferase activity in those TM3 cells harboring both of transfected genes when comparison was made to those cells that had been transfected with goosecoid-2-luciferase only, indicating that the β-catenin does play a vital role in regulating the transcription activity of goosecoid-2. Conclusions came to these studies were that the goosecoid-2 is a transcriptional factor regulated by β-catenin. Moreover, the goosecoid-2 is a shuttle protein equipped with both of the NLS and the NES to take up their responsibilities for the subcellular translocation between nuclei and cytoplasm, respectively. While the expression of goosecoid-2 in the mouse has been found to be limited at early embryonic stages before their implantation occurred and a constant expression in eyes and much lesser extent of expression in testes were both evidenced in the adult tissues, it is anticipated that further studies for elucidation the physiologic significances of this particular gene, based on either conditional knock-down or knock-out strategy, can be conducted in the coming future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:54:26Z (GMT). No. of bitstreams: 1 ntu-94-R91626010-1.pdf: 1379443 bytes, checksum: d581f4823d82d33e849934ec90259deb (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 摘要………………………………………………………………………1
緒言………………………………………………………………………3 文獻檢討 一、埋殖前胚之發育與基因調控…………………………4 二、埋殖後至體軸形成之發育生物學……………………6 三、早期胚胎發育與同源框基因之表現…………………7 四、Wnt訊息傳遞路徑與背側體軸之形成………………9 五、胚胎基因表現之研究…………………………………16 材料與方法……………………………………………………………18 結果與討論 一、同源框基因於早期胚胎發育之表現分析……………34 二、goosecoid-2同源框基因於早期胚胎發育之可能調控 機制.......................................52 三、goosecoid-2同源框基因之轉錄調控機制…………59 結語……………………………………………………………………67 參考文獻………………………………………………………………68 英文摘要………………………………………………………………82 小傳……………………………………………………………………84 | |
dc.language.iso | zh-TW | |
dc.title | 小鼠新穎同源框基因goosecoid-2其轉錄作用
及蛋白質定域之調控機制 | zh_TW |
dc.title | Regulatory mechanisms related to transcription and protein localization of goosecoid-2, a novel homeobox gene,
expressed in the mouse | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林淑華,陳全木,鄭金益,黃木秋 | |
dc.subject.keyword | 同源框基因, | zh_TW |
dc.subject.keyword | goosecoid-2, | en |
dc.relation.page | 89 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-28 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 畜產學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。