請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35462
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 何國川(Kuo-Chuan Ho) | |
dc.contributor.author | Tsung-Hsien Kuo | en |
dc.contributor.author | 郭宗憲 | zh_TW |
dc.date.accessioned | 2021-06-13T06:53:54Z | - |
dc.date.available | 2013-07-27 | |
dc.date.copyright | 2011-07-27 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-22 | |
dc.identifier.citation | [1] H. J. Park, M. G. Kang, S. H. Ahn, and L. J. Guo “A Facile Route to Polymer Solar Cells with Optimum Morphology Readily Applicable to a Roll-to-Roll Process without Sacrificing High Device Performance” Adv. Mater. 2010, 22, E247.
[2] W. Cai, X. Gongn and Y. Cao, “Polymer solar cells: Recent development and possible routes for improvement in the performance”, Solar Energy Materials & Solar Cells 2010, 94, 114. [3] 秦興國, “二氧化鈦奈米粒子摻混於有機感光層以提升高分子/富勒烯單層異質接面太陽能電池之光電轉換效率”, pp. 4-8, 國立成功大學, 臺南 (2006). [4] 黃中奕, “染料敏化及以施受體發光團為染料之太陽能電池研究”, pp. 3-7, 國立臺灣大學, 臺北 (2005). [5] B. O’Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353, 737 (1991). [6] S. E. Shaheen, R. Radspinner, N. Peyghambarian, G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cell by screen printing”, Appl. Phys. Lett., 79, 2996 (2001). [7] J. Bharathan, Y. Yang, “Polymer electroluminescent device processed by inkjet printing: 1. polymer light emitting logo”, Appl. Phys. Lett., 72, 2660 (1998). [8] C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. Janssen, N. S. Saricifrtci, “Realization of large area flexible fullerene-conjugated polymer photocells: A route to plastic solar cells”, Synth. Met., 102, 861 (1999). [9] J.-S. Hsieh, Solar Energy Engineering, pp. 366-372, Prentice-Hall, New Jersey (1986). [10] H. Kallmann, and M. Pope, “Photovoltaic effect in organic crystals”, J. Chem. Phys. 1959, 30, 585. [11] D. L. Morel, A. K. Ghosh, T. Feng, E. L. Stogryn, P. E. Purwin, R. F. Shaw, and C. Fishman, “High‐efficiency organic solar cells”, Appl. Phys. Lett. 1978, 32, 495 [12] C. W. Tang, “Two‐layer organic photovoltaic cell”, Appl. Phys. Lett. 1986, 48, 183 [13] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions”, Science 1995, 270, 1789 [14] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fomherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells”, Appl. Phys. Lett. 2001, 78, 841 [15] G. Yu and A. J. Heeger , “Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions”, J. Appl. Phys. 1995, 78, 4510. [16] J. J. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks”, Nature 1995, 376, 498. [17] N. C. Greenham, X. Peng and A. P. Alivisatos, “Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity”, Phys. Rev. B 1996, 54, 17628. [18] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos , “Visualization of a Ran-GTP gradient in interphase and mitotic xenopus egg extracts”, Science 2002, 295, 2425. [19] S. E. Gledhill, B. Scott, B. A. Gregg, “Organic and nano-structured composite photovoltaics: An overview”, J. Mater. Res. 2005, 20, 3167. [20] J. M. Hall, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holms, “Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell”, Appl. Phys. Lett. 1996, 68, 3120. [21] K. H. Yim, Z. Zheng, Z. Liang, R. H. Friend, W. T. S. Huck, J. S. Kim “EEfficient Conjugated-Polymer Optoelectronic Devices Fabricated by Thin-Film Transfer-Printing Technique”, Adv. Funct. Mater. 2008, 18, 1012 [22] J. H. Huang, F. C. Chien, P. Chen, K. C. Ho and C. W. Chu, “Monitoring the 3D Nanostructures of Bulk Heterojunction Polymer Solar Cells Using Confocal Lifetime Imaging”, Anal. Chem. 2010, 82, 1669. [23] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells”, Adv. Funct. Mater. 2003, 13, 85. [24] G. Li, V. Shrotriya, Y. Yao and Y. Yang, “Investigation of Annealing Effects and Film Thickness Dependence of Polymer solar cells based on Poly(3-hexylthiophene)”, J. Appl. Phys. 2005, 98, 043704 [25] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf and C. J. Brabec, “Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells”, Adv. Funct. Mater. 2005, 15, 1193. [26] V. Shrotriya, Y. Yao, G. Li and Yang Yang, “Effect of Self-Organization in Polymer/fullerene Bulk Heterojunctions on Solar Cell Performance”, Appl. Phys. Lett. 2006, 89, 063505 [27] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan and A. J. Heeger, “Processing additives for improved efficiency from bulk heterojunction solar cells”, J. Am. Chem. Soc. 2008, 130, 3619. [28] A. J. Moule and K. Meerhol, “Controlling Morphology in Polymer–Fullerene Mixtures”, Adv. Mater. 2008, 20, 240. [29] L. Li, G. Lu and X. Yang, “Improving Performance of Polymer Photovoltaic Devices Using an Annealing-Free Approach via Construction of Ordered Aggregates in Solution”, J. Mater. Chem. 2008, 18, 1984. [30] F. C. Chen, H. C. Tseng, and C. J. Ko, “Solvent Mixtures for Improving Device Efficiency of Polymer Photovoltaic Devices”, Appl. Phys. Lett. 2008, 92, 103316. [31] Y. Chang and L. Wang, “Efficient Poly(3-hexylthiophene)-Based Bulk Heterojunction Solar Cells Fabricated by an Annealing-Free Approach”, J. Phys. Chem. C 2008, 112, 17716. [32] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan and A. J. Heeger, “Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells”, J. Am. Chem. Soc. 2008, 130, 3619. [33] S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, and J. Roncali, “Triphenylamine−Thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells”, J. Am. Chem. Soc. 2006, 128, 3459. [34] J. Hou, Z. Tan, Y. Yan, C. Yang, Y. Li, “Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains”, J. Am. Chem. Soc. 2006, 128, 4911. [35] E. Wang, L. Wang, L. Lan, C. Luo, W. Zhuang, J. Peng and Y. Cao, “High-performance polymer heterojunction solar cells of a polysilafluorene derivative”, Appl. Phys. Lett. 2008, 92, 033307. [36] Y. Liang, D. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray and L. Yu, “Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties”, J. Am. Chem. Soc. 2009, 131, 7792. [37] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nat. Mater. 2007, 6, 497. [38] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, and J. M. J. Frechet, “Synthetic control of structural order in n-Alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells”, J. Am. Chem. Soc. 2010, 132, 7595. [39] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency”, Nat. Photonics 2009, 3, 649. [40] Y. T. Chang, S. L. Hsu, G. Y. Chen, M. H. Su, T. A. Singh, E. W. G. Diau and K. H. Wei, “Intramolecular Donor-Acceptor Regioregular Poly(3-hexylthiophene)s Presenting Octylphenanthrenyl-Imidazole Moieties Exhibit Enhanced Charge Transfer for Heterojunction Solar Cell Applications”, Adv. Funct. Mater. 2008, 18, 2356. [41] F. Huang, K. S. Chen, H. L. Yip, S. K. Hau, O, Acton, Y. Zang, J. Luo and A. K. Y. Jen, “Development of New Conjugated Polymers with Donor–Bridge–Acceptor Side Chains for High Performance Solar Cells”, J. Am. Chem. Soc. 2009, 131, 13886. [42] N. Blouin, A. Michaud and M. Leclerc, “A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells”, Adv. Mater. 2007, 19, 2295. [43] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. N. Plesu, M. Bellete, G. Durocher, Y. Tao and M. Leclerc, “Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells”, J. Am. Chem. Soc. 2008, 130, 732. [44] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nat. Photonics 2009, 3, 297. [45] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, “Efficiency Enhancement in Low Bandgap Polymer Solar Cells by Processing with Alkane Dithiols”, Nat. Mater. 2007, 6, 497. [46] J. Hou, H. Y. Chen, S. Zhang, G. Li and Y. Yang, “Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole”, J. Am. Chem. Soc. 2008, 130, 16144. [47] J. H. Huang, C. M. Teng, Y. S. Hsiao, F. W. Yen, P. Chen, F. C. Chang, and C. W. Chu, “Nanoscale Correlation between Exciton Dissociation and Carrier Transport in Silole-Containing Cyclopentadithiophene-Based Bulk Heterojunction Films”, J. Phys. Chem. C 2011, Article ASAP. [48] Y. Liang, Y. Wu, D. Feng, S. Tsai, H. Son, G. Li and L. Yu, “Development of New Semiconducting Polymers for High Performance Solar Cells”, J. Am. Chem. Soc. 2009, 131, 56. [49] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene”, Science, 1992, 258, 1474. [50] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 1995, 270, 1789. [51] C. J. Brabec, N. S. Saricific, J. C. Hummelen, “Plastic Solar Cells”, Adv. Funct. Mater. 2001, 11, 15. [52] Y. Kim, M. Shin, I. Lee, H. Kim and S. Heutz, “Multilayer organic solar cells with wet-processed polymeric bulk heterojunction film and dry-processed small molecule films”, Appl. Phys. Lett. 2008, 92, 093306. [53] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing”, Science, 2007, 317, 222. [54] M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells”, Adv. Mater. 2008, 20, 2116. [55] X. Wang, E. Perzon, F. Wswald, F. Langa, S. Admassie, M. R. Andersson and O. Inganas, “Enhanced Photocurrent Spectra Response in Low-Bandgap Polyfluorene and C70-Derivative-Based Solar Cells”, Adv. Funct. Mater, 2005, 15, 1665. [56] R. B. Ross, C. M. Cardona, D. M. Guldi, S. G. Sankaranarayanan, M. O. Reese, N. Kopidakis, J. Peet, B. Walker, G. C. Bazan, E. V. Keuren, B. C. Holloway and M. Drees, “Endohedral Fullerenes for Organic Photovoltaic Devices”, Nat. Mater. 2009, 8, 208. [57] Y. He, H. Y. Chen, J. Hou and Y. Li, “Indene-C-60 bisadduct: A new acceptor for high-performance polymer solar cells”, J. Am. Chem. Soc. 2010, 132, 5532. [58] G. Zhao, Y. He and Y. Li, “6.5% Efficiency of Polymer Solar Cells Based on poly(3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization”, Adv. Mater. 2010, 22, 4335. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35462 | - |
dc.description.abstract | 有機固態太陽能電池近幾年已逐漸受到各界重視,主要原因是其效率雖不如矽晶太陽能電池,但還可達到5~6 %,且其製作成本相較於矽晶太陽能電池來得便宜且簡易,對於可撓性及輕量化方面亦是矽晶太陽能電池所無法比擬的,故科學家才會持續不斷地探討其工作機制與元件效能。雖然有機固態太陽能電池效率表現尚無法運用至耗電量較大之設備上,卻已可操作於小型風扇或電子計算機等耗電量低之電器上。本研究主要目的是藉由轉印製程來製備多層結構電子元件,已達增加太陽能電池光電轉換效率以及有機發光二極體元件效率,在有機太陽能電池中而為了使得有機分子與電極之間的接觸降低,同時又不會失去太多施體與受體之間的介面接觸,所以製備了雙層具有不同P3HT/PCBM的重量比的太陽能電池,此外在有機發光二極體元件中,在電洞注入層與發光層之間插入了一有機薄膜(TFB)降低了電洞注入的能量障礙有效了提高元件效率。
轉印製程成功了製備多層結構的太陽能電池與有機發光二極體元件,在製備上層高分子薄膜時,為了避免溶劑會溶解下層薄膜的問題,我們使用了poly(di-methyl-silane) (PDMS)印章去轉印有機高分子薄膜至基板之上,對於有機太陽能之雙層主動層分為P3HT豐富層(P3HT-rich layer)與PCBM豐富層(PCBM-rich layer),而對於有機發光二極體元件其主動層之組成為bule-polyfluorene系列之發光層與poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-((4-sec-butylphenyl) imino-1,4 -phenylene)) (TFB)為電子阻擋層。而我們發現元件之效率表現與轉印的層數息息相關,當最適化每一層條件之後,有機太陽能光電轉換效率可以達到3.52%,而有機發光二極體元件效率與沒有電子阻擋層之元件相比,可使效率提升27% (3.7 cd/A 增加至4.7 cd/A)。 | zh_TW |
dc.description.abstract | Solid type polymer solar cells (PSCs) have been extensively studied in this decade, although the efficiency is still lower than 5~6%. Its low fabrication cost, easy processing, and flexible property make it attractive to researchers. The PSCs and polymer light emitting diodes (PLEDs) were demonstrated by incorporating multilayer structure through solution process. In order to prevent the dissolution of the bottom layer by the subsequent process, we use a poly(di-methyl-silane) stamp to transfer the active layer onto the target surface. We introduced the strategical multilayer structure by using our previous developed stamping technique. In order to minimize the unfavorable contact between organics and electrodes for bulk heterojunction (BHJ) solar cells while not losing much the donor and acceptor junctions, we studied the bilayer structure which consists of different fraction of poly(3-hexylthiophene) (P3HT)/ [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend layers. Furthermore, in order to balance carrier transport for PLEDs, we also studied the bilayer structure which consists of a bule-polyfluorene as light emitting layer (LEL) and poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-((4-sec-butylphenyl) imino-1,4 -phenylene)) (TFB) as a electron-blocking layer (EBL).
We found that the efficiency of devices was readily manipulated by changing the constitution of each stacking layer. After optimizing the fabrication conditions for each functional layer, we obtained PSCs reaching a power conversion efficiency of 3.52%. The efficiency of PLEDs incorporating an EBL was 27% greater (reaching 4.7 cd A–1) than that prepared without an EBL layer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:53:54Z (GMT). No. of bitstreams: 1 ntu-100-R98549017-1.pdf: 3511417 bytes, checksum: 28bc9a58d83ea428b0f4336108eae11f (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 中文摘要 Ⅰ
英文摘要 Ⅱ 致謝 ..Ⅳ 目錄 Ⅴ 表目錄 X 圖目錄 XII 第一章 緒論 1 1-1 引言 1 1-2 太陽能電池的種類 3 1-2-1 無機太陽能電池 4 1-2-2 染料敏化太陽能電池 6 1-2-3 有機太陽能電池 7 1-2-3-a有機太陽能電池的結構 12 1-3 太陽能電池之工作原理 15 1-4 太陽能電池的特性分析 18 1-5 研究動機 20 第二章 文獻回顧 22 2-1 異質接面形態控制 22 2-2 退火效應 23 2-3 添加劑效應 29 2-4 新穎性有機太陽能電池之材料 31 2-4-1 前瞻性共軛高分子 31 2-4-2 前瞻性富勒烯衍生物 39 第三章 實驗設備與方法 42 3-1 儀器設備 42 3-2 實驗藥品 46 3-3 實驗方法 49 3-3-1 導電玻璃與藥品之前處理 49 3-3-2 旋轉塗佈PEDOT:PSS 49 3-3-3 有機光作用層之轉印 50 3-3-4 熱蒸鍍鋁金屬電極 50 3-4 太陽電池光電化學測試 51 第四章 用轉印製程製備多層結構有機太陽能電池 52 4-1 前言 52 4-2 轉印製程 53 4-3 利用轉印製程製備多層結構太陽能電池 57 4-3-1 利用轉印製程製備多層結構太陽能電池 57 4-3-2 利用轉印製程製備多層結構太陽能電池 59 4-4 利用轉印製程製備具有濃度梯度的雙層結構之太陽能電池 63 4-5 利用轉印製程製備多層結構之有機發光二極體 70 第五章 結論與展望 85 第六章 參考文獻 87 附錄A Air mass能量計算方式 97 附錄B元件製作歷程 100 表目錄 表2-1 以窄能帶高分子材料所得元件效率之整理 38 表2-2 不同富勒烯衍生物的結構與能階. 41 表3-1 儀器設備 42 表3-2 實驗藥品. 46 表4-1 不同層異質接面結構元件以及在不同退火溫度下的倒置雙層結構所有元件表現參數如開環電壓(VOC)、光電流密度(JSC)、填充因子(FF)、光電轉換效率(PCE) 61 表4-2 單層異質接面系統與雙層結構之元件表現參數 66 表4-3 單層結構與雙層P3HT與PCBM不同重量比搭配雙層結構之電洞與電子遷移率以及其比率 68 圖目錄 圖1-1 運用連續式印刷製程製作有機太陽能電池. 2 圖1-2 有機太陽能電池自2001年至2009年之效率演進 2 圖1-3 太陽能電池世代交替示意圖 3 圖1-4 太陽能電池的種類與分類. 4 圖1-5 p-n接面能階圖:(a) p型與n型半導體 (b) 在平衡狀態下的p-n接面 10 圖1-6 由Siemens公司所製作的軟性基板有機太陽能電池. 11 圖1-7 高分子太陽能電池之元件結構示意圖. 14 圖1-8 有機太陽能電池之工作原理依序. 17 圖1-9 太陽能電池元件於照光下之I-V特性曲線以及元件參數 18 圖1-10 利用犧牲層來轉印有機薄膜之製程 21 圖1-10 實驗結構圖 21 圖2-1 薄膜內部形貌的比較 22 圖2-2 ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al的高分子太陽能電池元件結構. 24 圖2-3 ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al的高分子太陽能電池元件的外部量子效率. 25 圖2-4 P3HT:PCBM光作用層退火處理前和使用不同退火溫度處理後的UV-vis吸收光譜圖. 26 圖2-5 高溫退火處理對於主動層內部形貌與元件效率的影響. 27 圖2-6 以不同成膜速率製備之P3HT:PCBM光作用層的原子力顯微鏡影像. 28 圖2-7 分子材料(PCPDTBT)加入不同添加劑之形貌改變 30 圖2-8 PCPDTBT之化學結構 32 圖2-9 高分子能帶對太陽光譜不匹配造成光子損失的對應圖 34 圖2-10 PCDTBT之化學結構和元件結構示意圖 35 圖2-11 將適當碳原子置換為矽原子可大幅提升高分子太陽能電池的光電流與元件效率 36 圖2-12 共軛高分子PBD系列之化學結構 37 圖2-13 施體與受體於能階配位上示意圖 40 圖3-1 Photo diode (S1133)之吸收光譜 45 圖3-2 PEDOT:PSS的結構圖 47 圖3-3 Regioregular P3HT結構圖 48 圖3-4 PCBM結構圖 48 圖3-5 PDMS之化學結構 50 圖3-6 Hole-and electron-only 元件結構與能階圖 51 圖4-1 PDMS印章製作過程 53 圖4-2 PDMS 轉印製程 55 圖4-3 原子顯微鏡影像 (a) P3HT 高分子薄膜塗布在PDMS表面上 (b) 在轉印製程過後的PDMS印章表面 56 圖4-4 在模擬光源AM 1.5 G (100 mW/cm2) 下的電壓電流特性圖1至4層主動層結構之異質接面太陽能電池 (b)在不同退火溫度下的雙層倒置結構之有機太陽能電池 58 圖4-5 在模擬光源AM 1.5 G (100 mW/cm2) 下的電壓電流特性圖,不同退火溫度下的雙層倒置結構之有機太陽能電池 60 圖4-6 利用轉印製程製備的雙層結構及異質接面結構之太陽能電池的吸收光 譜和螢光放射圖譜 62 圖4-7 (a)具有濃度梯度之雙層結構元件(b)電子掃描顯微鏡圖之雙層結構元件的截面圖(c)元件之能階圖. 72 圖4-8-1 原子力掃描顯微鏡圖(a) P3HT高分子薄膜 (b)P3HT與PCBM以重量比1:0.25混摻. 73 圖4-8-2 原子力掃描顯微鏡圖(a) P3HT與PCBM以重量比1:0.5混摻(b) P3HT與PCBM以重量比1:1混摻. 74 圖4-9 雙層結構主動層之縱深硫元素成份分析圖. 75 圖4-10 不同轉速的雙層結構元件表現. 76 圖4-11 單層異質接面系統與雙層結構之元件電壓電流特性圖. 77 圖4-12 上下層P3HT與PCBM不同重量比搭配雙層結構單一載子電洞注入元件之電壓電流特性圖與logJ v.s. log V關係圖. 78 圖4-13 上下層P3HT與PCBM不同重量比搭配雙層結構單一載子電子注入元件之電壓電流特性圖與log J v.s. log V關係圖. 79 圖4-14 在波長為400至800奈米之下各個雙層結構元件的外部量子效率. 80 圖4-15 各個雙層結構主動層之UV-vis吸收光譜. 81 圖4-16 (a)為多層有機發光二極體元件結構ITO/PEDOT:PSS/TFB/LEP/Cs2CO3/Al,與TFB化學結構(b)電子掃瞄顯微鏡之有機發光二極體元件結構側面圖(c)多層有機發光二極體元件能階圖. 82 圖4-17-1 在不同TFB薄膜厚度之下(a)為光強度對電壓之特性圖,圖4-16-1(b)為電流-電壓特性圖. 83 圖4-17-2 在不同TFB薄膜厚度之下(c)電流效率(Current Efficiency) 對不同電流密度之特性圖(d)能量效率 (Power Efficiency)對不同電流密度之特性圖. 84 圖A-1 直接照射、散射、折射至地球的總輻射. 97 圖A-2 路徑以及空氣質量隨著天頂角的不同而變化. 99 圖B-1 F8T2結構式射. 100 圖B-2 (a) P3HT (b) F8T2薄膜之吸收光譜. 103 圖B-3 (a) PC[60]BM之吸收光譜 (b) P3HT、F8T2與PC[60]BM之能階圖. 104 圖B-4 光作用層光譜互補之雙層結構元件. 105 圖B-5 不同P3HT厚度(製備濃度為0.25 wt%)之多層結構元件表現. 106 圖B-6 不同P3HT厚度(製備濃度為0.0625 wt%)之多層結構元件表現. 107 | |
dc.language.iso | zh-TW | |
dc.title | 利用轉印製程製備高效率電子元件之研究 | zh_TW |
dc.title | Achieving Efficient Organic Optoelectronics via Stamping Technique | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周澤川(Tza-Chuan Chou),林金福(King-Fu Lin),陳林祈(Lin-Chi Chen),朱治偉(Chih-Wei Chu) | |
dc.subject.keyword | 有機發光二極體,富勒烯,多層結構,轉印製程,太陽能電池, | zh_TW |
dc.subject.keyword | fullerene,heterojunction,light emitting diode,polymer,stamping process., | en |
dc.relation.page | 109 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 3.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。