請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35451
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陽毅平 | |
dc.contributor.author | Chun-Tien Lu | en |
dc.contributor.author | 魯珺田 | zh_TW |
dc.date.accessioned | 2021-06-13T06:53:25Z | - |
dc.date.available | 2016-06-30 | |
dc.date.copyright | 2011-08-04 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-22 | |
dc.identifier.citation | [1] J. M. Barnard, I. D. V. Wyk and W. G. Dunford, 'A new drive system for battery operated wheelchair using 3-phase cage rotor induction machines,' in Proceedings of International Conference on Industrial Electronics, Control,Instrumentation,and Automation, San Diego, CA , USA, Nov. 9-13 1992, vol.1, pp.138-143.
[2] R. Nilssen, S. E. Skaar, R. Lund, T. Skjellnes, S. Ovrebo, and E. Lovli, 'Design of a permanent magnet synchronous motor integrated in the wheel rim on wheelchairs,' in European Conference on Power Electronics and Applications, Dresden, Germany, Sep. 9-14, 2005, pp.1-8. [3] T. Yasuda, D. Furikado, and K. Tanaka, 'One hand drive wheelchair with new manipulation mechanism and assist functions,' in IEEE/RSJ International Conference on Intelligent Robots and System, Beijing, China, Oct. 9-15, 2006, pp.2833-2838. [4] K. Sakai, T. Tanaka, and K. Tanaka, 'Improvements of manipulation torque transfer mechanism and assist unit for one hand drive wheelchair with a triple ring,' in IEEE International Conference on Robotics and Biomimetics, Guilin, China, Dec. 19-23, 2009, pp.196-201. [5] M. Wada, 'Holonomic and omnidirectional wheelchairs with synchronized 4WD mechanism,' In IEEE/RSJ International Conference on Intelligent Robots and System, San Diego, California, USA, Oct. 29- Nov. 2, 2007, pp.1196-1202. [6] T. Masuzawa, Y. Nakajima, H. Ikeda, and S. Minami, 'Development of all directional powered wheelchair,' in IEEE Conference on Vehicle Power and Propulsion, Harbin, China, Sep. 3-5, 2008, pp.1-2. [7] Y. P. Yang, W. C. Huang, and C. W. Lai, 'Optimal design of rim motor for electric powered wheelchair,' IET Transactions on Electric Power Applications, vol.1, no.5, pp.825-832, Sep. 2007. [8] Y. P. Yang, and Z. H. Lee, 'A novel wheelchair powered by dual rim motors,' in IEEE International Conference on Electric Machines and Drives, Miami, FL, USA, May 3-6, 2009, pp.1284-1289. [9] H. Wijenayake, J. M. Bailey, and P. J. McCleer, 'Design optimization of an axial gap permanent magnet brushless DC motor for electric vehicle applications,' in IEEE Conference on Industry Applications, Orlando, FL, USA, Oct. 8-12, 1995, vol.1, pp.685-692. [10] M. K. Kim, C. G. Lee, and H. K. jung, 'Multiobjective optimal design of three-phase induction motor using improved evolution strategy,' IEEE Transactions on Magnetics, vol.34, no.5, pp.2980-2983, Sep. 1998. [11] Y. D. Chun, S. Wakao, T. H. Kim, K. B. Jang, and J. Lee, 'Multiobjective design optimization of brushless permanent magnet motor using 3D equivalent magnetic circuit network method,' IEEE Transactions on Applied Superconductivity, vol.14, pp.1910-1913, Jun. 2004. [12] Y. P. Yang, J. P. Wang, and C. H. Cheung, 'Design and control of axial-flux brushless DC wheel motor for electric vehicles-part I:multiobjective optimal design and analysis ' IEEE Transactions on Magnetics, vol.40, no.4, pp.1873-1882, Jul. 2004. [13] Y. P. Yang, J. P. Wang, S. W. Wu, and Y. P. Luh, 'Design and control of axial-flux brushless DC wheel motors for electric vehicles-part II: optimal current waveforms and performance test,' IEEE Transactions on Magnetics, vol.40, no.4, pp.1883-1891, Jul. 2004. [14] K. S. R. Rao, and A. H. Bin Othman, 'Design optimization of a BLDC motor by Genetic Algorithm and Simulated Annealing,' in IEEE Interational Conference on Intellignet and Advanced Systems, Kuala Lumpur, Malaysia, Nov. 25-28, 2007, pp.854-858. [15] K. Deb, and K. Sindhya, 'Deciphering innovative principles for optimal electric brushless D.C. permanent magnet motor design,' in IEEE Congress on Evolutionary Computation, Hong Kong, China, Jun. 1-6, 2008, pp.2283-2290. [16] L. Y. Li, B. Kou, J. W. Cao, and L. L. Zhang, 'Optimization design of permanent magnet synchronous motor for the electrical spindle,' in IEEE International Conference on Electric Machines and Systems, Wuhan, China, Oct. 17-20, 2008, pp.205-207. [17] T. D. Nguyen, V. Lanfranchi, C. Doc, and J. P. Vilain, 'Comparison of optimization algorithms for the design of a brushless DC machine with travel-time minimization,' in IEEE International Symposium on Advanced Electromechanical Motion Systems, Lille, France, Jul. 1-3, 2009, pp.1-6. [18] B. O. Son, Y. K. Kim, and J. Lee, 'Optimization of the BLDC motor considering the fluctuation of the design variables,' in IEEE International Conference on Electrical Machines and Systems, Tokyo, Japan, Nov. 15-18, 2009, pp.1-4. [19] Z. Q. Zhu, and D. Howe, 'Influence of design parameters on cogging torque in permanent magnet machines,' IEEE Transactions on Energy Conversion, vol.15, no.4, pp.407-412, Dec. 2000. [20] Z. Q. Zhu, and D. Howe, 'Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors,' IEEE Transactions on Magnetics, vol.28, no.2, pp.1371-1374, Mar. 1992. [21] Z. Q. Zhu, S. Ruangsinchaiwanich, and D. Howe, 'Synthesis of cogging torque in permanent magnet machines by superposition,' IET International Conference on Power Electronics, Machines and Drives, Edinburgh, UK, Mar. 31- Apr. 2, 2004, vol.2, pp.828-833. [22] Z. Q. Zhu, S. Ruangsinchaiwanich, D. Ishak, and D. Howe, 'Analysis of cogging torque in brushless machines having non-uniformly distributed stator slots and stepped rotor magnets,' IEEE Transactions on Magnetics, vol.41, no.10, pp.3910-3912, Oct. 2005. [23] Z. Li, S. Z. Jiang, Z. Q. Zhu, and C. C. Chan, 'Comparison of alternate analytical models for predicting cogging torque in surface-mounted permanent magnet machines,' IEEE Conference on Vehicle Power and Propulsion, Harbin, China, Sep. 3-5, 2008, pp.1-6. [24] M. Aydin, Q. Ronghai, and T. A. Lipo, 'Cogging torque minimization technique for multiple-rotor, axial-flux, surface-mounted-PM motors: alternating magnet pole-arcs in facing rotors,' IEEE Conference on Industry Applications, Salt Lake City, UT, USA, Oct. 12-16, 2003, vol.1, pp.555-561. [25] R. Lateb, N. Takorabet, and F. Meibody-Tabar, 'Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors,' IEEE Transactions on Magnetics, vol.42, no.3, pp.442-445, Mar. 2006. [26] Y. B. Yang, X. H. Wang, C. Q Zhu, and C. Z Huang, 'Study of magnet asymmetry for reduction of cogging torque in permanent magnet motors,' IEEE Conference on Industrial Electronics and Applications, Xian, China, May 25-27, 2009, pp.2325-2328. [27] Y. B. Yang, X. H. Wang, R. Zhang, T. T. Ding, and R. Y. Tang, 'The optimization of pole arc coefficient to reduce cogging torque in surface-mounted permanent magnet motors,' IEEE Transactions on Magnetics, vol.42, no.4, pp.1135-1138, Apr. 2006. [28] L. J. Wu, W. B. Jin, J. Ni, and J. P. Ying, 'A cogging torque reduction method for surface mounted permanent magnet motor,' IEEE International Conference on Electrical Machines and Systems, Seoul, Korea, Oct. 8-11, 2007, pp.769-773. [29] L. Dosiek, and P. Pillay, 'Cogging torque reduction in permanent magnet machines,' IEEE Transactions on Industry Applications, vol.43, no.6, pp.1565-1571, Nov. 2007. [30] N. N. Chen, S. L. Ho, and W. N. Fu, 'Optimization of permanent magnet surface shapes of electric motors for minimization of cogging torque using FEM,' IEEE Transactions on Magnetics, vol.46, no.6, pp.2478-2481, Jun. 2010. [31] S. L. Ho, N. N. Chen, and W. N. Fu, 'An optimal design method for the minimization of cogging torques of a permanent magnet motor using FEM and genetic algorithm,' IEEE Transactions on Applied Superconductivity, vol.20, no.3, pp.861-864, Jun. 2010. [32] L. Y. Hsu, and M. C. Tsai, 'Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples,' Journal of Magnetism and Magnetic Materials, vol. 282, pp.193-197, Nov. 2004. [33] J. Y. Lee, J. H. Chang, D. H. Kang, S. I. Kim, and J. P. Hong, 'Tooth shape optimization for cogging torque reduction of transverse flux rotary motor using design of experiment and response surface methodology,' IEEE Transactions on Magnetics, vol.43, no.4, pp.1817-1820, Apr. 2007. [34] Y. B. Yang, X. H. Wang, X. M. Leng, D. H. Wang, and S. Y. Liu, 'Reducing cogging torque in surface-mounted permanent magnet motors by teeth notching,' IEEE Conference on Industrial Electronics and Applications, Harbin, China, May 23-25, 2007, pp.265-268. [35] R. Somanatham, and P. V. N. Prasad, 'Reduction of cogging torque of PMBLDC motor by changes in active surface area,' IET-UK International Conference on Information and Communication Technology in Electrical Sciences, Chennai, Tamilnadu, Dec. 20-22, 2007, pp.414-419. [36] J. K. Xia, T. Dong, C. Y. Wang, and J. Y. Zhao, 'Low speed high torque PMSM design based on unequal teeth structure,' IEEE International Conference on Electrical Machines and Systems, Wuhan ,China, Oct. 17-20, 2008, pp.3274-3277. [37] X. T. Jiang, J. W. Xing, Y. Li, and Y. P. Lu, 'Theoretical and simulation analysis of influences of stator tooth width on cogging torque of BLDC motors,' IEEE Transactions on Magnetics, vol.45, no.10, pp.4601-4604, Oct. 2009. [38] M. S. Islam, S. Mir, T. Sebastian, and S. Underwood, 'Design considerations of sinusoidally excited permanent-magnet machines for low-torque-ripple applications,' IEEE Transactions on Industry Applications, vol.41, no.4, pp.955-962, Aug. 2005. [39] J. A. Guemes, A. M. Iraolagoitia, M. P. Donsion, and J. I. Del Hoyo, 'Analysis of torque in permanent magnet synchronous motors with fractional slot windings,' IEEE International Conference on Electrical Machines and Systems, Vilamoura, Portugal, Sep. 6-9, 2008, pp.1-4. [40] R. Islam, I. Husain, A. Fardoun, and K. McLaughlin, 'Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction,' IEEE Transactions on Industry Applications, vol.45, no.1, pp.152-160, Jan.-Feb. 2009. [41] H. C. Feng, X. D. Wang, X. Z. Xu, and Y. J. Liu, 'Optimization of asymmetric permanent magnetic synchronous motor for cogging torque minimization using finite element method,' in IEEE International Conference on Electrical Machines and Systems, Wuhan, China, Oct. 17-20, 2008, pp.3559-3563. [42] Werner K. A. Baran, 'Influence of different magnetic field profiles on eddy-current braking,' in IEEE Transactions on Magnetics, vol.6, no.2, pp.260-263, Jun. 1970. [43] Kosuke Nagaya, Hiroyuki Kojima, Yasuo Karube, and Hiroshi Kibayashi, 'Braking forces and damping coefficients of eddy current brakes consisting of cylindrical magnets and plate conductors of arbitrary shape,' in IEEE Transactions on Magnetics, vol.20, no.6, pp.2136-2145, Nov. 1984. [44] Shi-Quan Zheng, and Degui Chen, 'Analysis of transient magnetic fields coupled to mechanical motion in solenoidal electromagnet excited by voltage source,' in IEEE Transactions on Magnetics, vol.28, no.2, pp.1315-1317, Mar. 1992. [45] Timo T. Vekara, and Jarl-Thure Eriksson, 'Dynamic model of an electromagnetic massive core brake actuator,' in IEEE Transactions on Magnetics, vol.32, no. 3, pp.1970-1974, May 1996. [46] Yiming You, Degui Chen, Zhiqiang Shun, Jun Zheng, Jingshu Zhang, and Wenke Luo, 'The optimal design parameters selection of permanent actuator for vacuum circuit breaker based on dynamic characteristic analysis,' 20th International Symposium on Discharges and Electrical Insulation in Vacuum, Xian, China, Nov. 7, 2002, pp.584-587. [47] A. Deihimi, 'Improved model of saturated regions in magnetic equivalent circuits of highly saturated electromagnetic devices,' 11th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, May 22-24, 2008, pp.45-50. [48] A. Danila, F. Sisak, S. Moraru and L. Perniu, 'Computer aided design by FEM method for eddy-current brakes.' in IEEE International on Electric Machines and Drives Conference, Antalya, Turkey, May 3-5, 2007, vol.1, pp.347-352. [49] A. A. Adly, S. K. Abd-El-Hafiz, 'Speed-range-based optimization of nonlinear electromagnetic braking systems,' in IEEE Transactions on Magnetics, vol.43, no.6, pp.2606-2608, Jun. 2007. [50] Hyung-Bin Ihm, Sung Gu Lee, Sang-Hwan Ham and Ju Lee, 'The influence of slit construction on the eddy-current braking torque considered by 3D FEM analysis.' in International Conference on Electrical Machines and Systems, Wuhan, China, Oct. 17-20, 2008, pp.444-446. [51] M. Nassar Albunni, Volker Rischmuller, Thomas Fritzsche, and Boris Lohmann, 'Model-order reduction of moving nonlinear electromagnetic devices,' in IEEE Transactions on Magnetics, vol.44, no.7, pp.1822-1829, Jul. 2008. [52] Sharifaddin Sharif, Kourosh Sharif, 'Influence of skin effect on torque of cylindrical eddy-current brake,' in International Conference on Power Engineering, Energy and Electrical Drives, Setubal,Portugal, Mar. 18-20, 2009, pp.535-539. [53] Tran Hai Nam, and Kyoung Kwan Ahm, 'A new structure of MR brake with the waveform boundary of rotary disk,' ICROS-SICE International Joint Conference, Fukuoka International Congress Center, Fukuoka, Japan, Aug. 18-21, 2009, pp.2997-3002. [54] Prashanth Krishnamurthy, Wenzhe Lu, Farshad Khorrami, and Ali Keyhani, 'Robust force control of an SRM-based electromechanical brake and experimental results,' in IEEE Transactions on Control System Technology, vol.17, no. 6, pp.1306-1317, Nov. 2009. [55] Yuanyuan Sun, Yanliang Xu, and Zhining Yao, 'Analysis and calculation of brake force for side-magnetism brake single-phase induction motor,' in IEEE Conference on Industrial Electronics and Applications, Xian, China, May 25-27, 2009, pp.2620-2623. [56] Zhijun Long, Changyou Li, Bin Huang, Weiwei Wen, 'Simulation research on braking torque of eddy-current retarder,' in International Workshop on Education Technology and Computer Science, Wuhan, China, Mar. 7-8, 2009, vol.1, pp.521-525. [57] Constantin Stoica, Leonard Melcescu, Emilian Lefter, Luminita Mirela Constantinescu, 'Computation of the characteristics eddy-current electromagnetic brake for a bicycle, by the finite element method 3D,' in International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, May 20-22, 2010, pp.436-440. [58] 康陽科技股份有限公司. (2010, Jun. 20). 電動輪椅型錄 [Online]. Available: http://www.our-program.com.tw:8081/fadnor/karma/ [59] 上銀科技股份有限公司. (2010, Jun. 20). 線性軸承型錄 [Online]. Available: http://www.hiwin.com [60] 蔡豐州, 創新電動輪椅之手輪馬達最佳化設計與應用, 碩士論文, 國立 台灣大學, 台北, 2010. [61] 仟岱有限公司. (2010, Sep. 05). 電磁式斷電煞車器型錄 [Online]. Available: http://www.chaintail.com/cht [62] American wire gauge (AWG). (2010, Jun. ).Wire gauge and current limits [Online]. Available: http://www.powerstream.com/Wire_Size.htm [63] 台灣三住股份有限公司. (2009, Nov. ).工廠自動化用機械標準零件 [Online]. Available: http://tw.misumi-ec.com/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35451 | - |
dc.description.abstract | 本論文研究目的為整合手輪馬達動力輪裝配到輪椅車架上,由於手輪馬達研發已達到成熟的階段,為了在現有市場開拓新的領域,特別將手輪馬達與週邊零件整合成動力輪,使用者只需裝配兩顆動力輪與方向遙控器在輪椅車架上,就可以自由切換手動以及電動模式,本論文所研究的新型電動輪椅在重量、速度及續航力上都有出色的表現。
為了可以使用手推手扶圈轉子來操作輪椅,本論文先對第三代手輪馬達進行降低頓轉力矩為主,主要方法為隔開手輪馬達之定子與轉子之間的氣隙,直接來降低馬達氣隙之間的能量與磁鐵吸引力。 由於手輪馬達的改良,在第四代手輪馬達動力輪產品進行測詴時,因為頓轉力矩的降低,第四代手輪馬達可以直接使用手推來轉動手扶圈轉子,但也衍生出停車時無足夠的瞬間煞車制動力,本論文在第五代手輪馬達動力輪模組內增加電磁煞車來產生煞車制動力,並將電池、馬達驅動控制器一併放入動力輪模組內,同時也改良手輪馬達的塊狀定子,來增加馬達效率與輸出。 第五代手輪馬達動力輪具有最大輸出力矩28.55 N-m,最高轉速96 rpm,最大效率80 %,單顆動力輪重12 kg。本論文使用康揚KM-AT20運動輪椅進行組裝與加工,組裝後總重35 kg。 | zh_TW |
dc.description.abstract | This thesis proposes to integrate and fabricate dual power wheel with rim motors for, a novel electric wheelchair. Based on the previously developed rim motor, a novel power wheel is integrated with battery, brake, and control as a compact assembly on the wheelchair. This power wheel can be directly installed on commercial wheelchair frame and may become a new health and care product on the market. Both manual and power driving modes can be switched by users, and the wheelchair with the novel power wheels is proved to be competitive because of its less weight, good driving speed, and longer driving range.
First of all, in order to operate the wheelchair by pushing the rim rotor manually, the cogging torque of the rim motor must be reduced. This was accomplished by releasing mechanism, which separates the stator and rotor so that the normal magnetic force is reduced by increasing the air gap length. Improved by an advanced design, the cogging torque of the rim motor is so reduced that the manual operation becomes easy and smooth and the releasing mechanism is not necessary. In this research, a hybrid powder and electromagnetic brake is designed and manufactured. The poki-poki stators of rim motor are also made to reduce the weight and improve the efficiency of the rim motor. Finally, a compact power wheel is integrated with rim motor, battery, brake and motor drive. The experimental results show that the proposed power wheel features a maximum torque of 28.55 Nm, maximum rotational speed of 96 rpm, and maximum efficiency of 80%. The complete set of power wheel weighs 12 kg, and the total weight of the novel wheelchair weighs 35 kg after the power wheels are installed on a commercial wheelchair frame. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:53:25Z (GMT). No. of bitstreams: 1 ntu-100-R97522828-1.pdf: 8903679 bytes, checksum: a80411a16423df92c31e5aa92ccb9543 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄
致謝 I 中文摘要 III Abstract V 目錄 VII 圖目錄 IX 表目錄 XIII 1 第一章 導論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 電動輪椅動力系統 2 1.2.2 電動輪椅電磁制動器 5 1.3 各章摘要 6 2 第二章 第四代手輪馬達動力輪 8 2.1 手輪馬達簡介 8 2.2 馬達定子伸縮機構零組件介紹 11 2.2.1 線性軸承介紹 14 2.3 移動距離與凸輪關係 17 2.4 機構應力分析 21 2.4.1 受力狀態 21 2.5 結果與討論 25 3 第三章 第五代手輪馬達動力輪 28 3.1 電磁煞車設計 29 3.1.1 斷電煞車、磁粉煞車介紹 29 3.1.1.1 斷電煞車 29 3.1.1.2 磁粉煞車 30 3.1.2 初步合成設計 32 3.1.3 物理模型與數學模型 34 3.1.4 最佳化設計 45 3.1.4.1 基本尺寸 45 3.1.4.2 零敏度分析與設計變數決定 46 3.1.4.3 準牛頓最佳化 57 3.1.4.3.1 網路組織架構 57 3.1.4.3.2 資料處理 58 3.1.4.3.3 逆傳遞法則的梯度運算 59 3.1.4.3.4 準牛頓逆傳遞法則 62 3.1.4.4 最佳化設計 65 3.1.5 應力分析 68 3.1.5.1 應力分析簡介 68 3.1.5.2 材料最佳化 70 3.1.5.3 應力分析最佳化結果 71 3.1.6 結果與討論 73 3.2 塊狀定子設計 76 3.2.1 定子拆裝設計 76 3.2.2 測試機台介紹 80 3.3 測試結果與討論 83 4 第四章 結論與未來展望 87 4.1 結論 87 4.2 未來展望 87 參考文獻 89 圖目錄 圖 1 1 (A)第三代手輪馬達動力輪、(B)第四代手輪馬達動力輪、(C)第五代手輪馬達動力輪 2 圖 2 1 第四代手輪馬達動力輪(A)零件爆炸圖、(B)組合圖 8 圖 2 2 (A)傳統電動輪椅方塊圖,(B)傳統電動輪椅實體圖 [58] 9 圖 2 3 (A)動力輪系統方塊圖,(B)第三代手輪馬達 10 圖 2 4 定子、轉子與外輪 11 圖 2 5 伸縮機構零件圖,組裝方向 12 圖 2 6 伸縮機構原位置組合圖(A)正視圖、(B)三角視圖 12 圖 2 7 伸縮機構背面組合圖(A)兩側收縮狀態(B)兩側伸出狀態 13 圖 2 8 MG系列線性軸承 15 圖 2 9 線性軸承精度幾何圖 15 圖 2 10 線性滑軌尺寸圖 16 圖 2 11 (A)凸輪、(B)機構背面圖,凸輪安裝位置 18 圖 2 12 總力與氣隙分佈圖 20 圖 2 13 整體零件圖 22 圖 2 14 整體零件圖應力狀態(A)定轉子吸引力、(B)馬達轉動力 22 圖 2 15 銜接板金的馬達轉動力應力分析 22 圖 2 16 銜接板金的馬達定轉子吸引力應力分析 23 圖 2 17 移動板的馬達轉動力應力分析 23 圖 2 18 移動板的馬達定轉子吸引力應力分析 24 圖 2 19 底板的馬達轉動力應力分析 24 圖 2 20 底板的馬達定轉子應力分析 25 圖 2 21 第四代手輪馬達動力輪 25 圖 2 22 第四代手輪馬達動力輪,裝在輪椅車架上 26 圖 2 23新型電動輪椅之第四代手輪馬達動力輪整合 26 圖 3 1 第五代手輪馬達動力輪零件爆炸圖 28 圖 3 2 第五代手輪馬達動力輪組合圖(A)正面、(B)內側 28 圖 3 3 仟岱公司斷電煞車(A)外觀圖、(B)CAD圖檔 29 圖 3 4 斷電煞車動作流程圖 30 圖 3 5 磁粉煞車(A)磁粉煞車零件圖、(B)磁粉煞車動作流程圖 31 圖 3 6 磁粉煞車原理 31 圖 3 7 初版煞車 32 圖 3 8 初版煞車內部構造圖 32 圖 3 9 星寶煞車動作流程,(A)斷電煞車,(B)磁粉煞車 33 圖 3 10 彈簧尺寸圖[62] 36 圖 3 11 電磁煞車設計流程圖 38 圖 3 12 鐵材磁路模型 38 圖 3 13 鐵材相關尺寸 39 圖 3 14 最簡單繞線堆積法 40 圖 3 15 磁路模型 41 圖 3 16 有限元素分析軟體對電磁煞車分析磁通方向與磁通大小 45 圖 3 17 鐵材與繞線初步設計 46 圖 3 18 斷電煞車磁制動力(A)及重量(B)對參數R1的靈敏度 48 圖 3 19 斷電煞車磁制動力(A)及重量(B)對參數W1的靈敏度 49 圖 3 20 斷電煞車磁制動力(A)及重量(B)對參數W2的靈敏度 50 圖 3 21 斷電煞車磁制動力(A)及重量(B)對參數W3的靈敏度 51 圖 3 22 斷電煞車磁制動力(A)及重量(B)對參數W4的靈敏度 52 圖 3 23 斷電煞車磁制動力(A)及重量(B)對參數W5的靈敏度 53 圖 3 24 斷電煞車磁制動力(A)及重量(B)對參數H1的靈敏度 54 圖 3 25 斷電煞車磁制動力(A)及重量(B)對參數H2的靈敏度 55 圖 3 26 斷電煞車磁制動力(A)及重量(B)對參數H3的靈敏度 56 圖 3 27前饋式類神經網路結構 57 圖 3 28 一層隱藏層的前饋式網路 59 圖 3 29 準牛頓法流程圖 63 圖 3 30 有限元素軟體最佳化尺寸範圍設定 66 圖 3 31 有限元素軟體最佳化目標設定 66 圖 3 32有限元素軟體最佳化過程 67 圖 3 33 基本零件3D圖檔 68 圖 3 34 基本零件(拘束與負載) 68 圖 3 35 基本零件(網格) 69 圖 3 36 基本零件(應力分佈) 69 圖 3 37 基本零件(變形量分佈) 69 圖 3 38 煞車板最佳化外型(A)四孔、(B)五孔 71 圖 3 39煞車板最佳化外型(A)六孔、(B)七孔 71 圖 3 40煞車板最佳化八孔外型 72 圖 3 41 電池煞車整體設計圖(A)半剖面圖、(B)整體外觀圖 72 圖 3 42 電磁煞車,氣隙0.5 MM 73 圖 3 43 電磁煞車,氣隙0 MM 74 圖 3 44 電磁煞車氣隙0 MM到0.5 MM,電磁制動力與彈簧力分佈圖 74 圖 3 45 電磁煞車實體圖正面 75 圖 3 46 電磁煞車實體圖背面 76 圖 3 47 (A)矽鋼片、(B)堆疊後定子 76 圖 3 48 塊狀定子零件圖(A)定子背鐵、(B)定子齒 77 圖 3 49 塊狀定子組合情況 77 圖 3 50 塊狀定子繞線殼 79 圖 3 51 塊狀定子實體圖 79 圖 3 52 塊狀定子實體圖組裝 79 圖 3 53 塊狀定子(A)組裝治具、(B)塊狀定子實體圖 80 圖 3 54 加速度法之速度與加速度變化簡圖 81 圖 3 55 MEA三階段量測曲線 82 圖 3 56 MEA機台與測試馬達 82 圖 3 57 第五代手輪馬達動力輪MEA測試數據擷取 84 圖 3 58 第四代手輪馬達動力輪MEA測試數據擷取[59] 84 圖 3 59 兩版動力輪馬達力矩與轉速特性曲線比較圖 84 圖 3 60 第五代手輪馬達(A)內部組裝零件、(B)整車側面照 86 表目錄 表 1 1 手輪馬達動力輪比較表 2 表 2 1 第三代手輪馬達特性表 14 表 2 2 線性軸承精度公差 16 表 2 3 線性軸承精度公差 16 表 2 4 線性滑軌尺寸表 17 表 2 5 拉伸彈簧規格表 18 表 2 6 拉伸彈簧使用範圍與負荷 19 表 2 7 彈簧與馬達定子轉子吸引力 20 表 2 8 第四代手輪馬達動力輪整車重量 26 表 2 9 第三代手輪馬達與第四代手輪馬達設計比較表 [60] 27 表 3 1 AWG銅線規格表[62] 35 表 3 2 銅線設計表 35 表 3 3 抗壓彈簧規格[62] 36 表 3 4 電磁煞車初始設計設計值 42 表 3 5 基本尺寸定義 46 表 3 6 靈敏度分析設定 47 表 3 7 電磁煞車最佳化結果 67 表 3 8 煞車板應力分析尺寸變數範圍 70 表 3 9 煞車板應力分析最佳化結果 71 表 3 10 煞車最後統計 72 表 3 11 電磁煞車比較表 73 表 3 12 電磁煞車氣隙0 MM到0.5 MM,電磁制動力與彈簧力 74 表 3 13 電磁煞車氣隙0.1 MM,電流0.1 A到1 A之電磁制動力 75 表 3 14 第四代手輪馬達與第五代手輪馬達設計比較表[59] 78 表 3 15 繞線殼與佔槽率比較表 79 表 3 16 第四代手輪馬達動力輪與第五代手輪馬達動力輪測試比較表 83 表 3 17 第五代手輪馬達動力輪重量表 85 | |
dc.language.iso | zh-TW | |
dc.title | 新型電動輪椅之手輪馬達動力輪的整合 | zh_TW |
dc.title | Integration of Power Wheels with Rim Motor for a Novel Electric Wheelchair | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李志中,李綱 | |
dc.subject.keyword | 電動輪椅,手輪馬達,動力輪,電磁煞車, | zh_TW |
dc.subject.keyword | Electric wheelchair,Power wheels,Rim motor,Electromagnetic brake, | en |
dc.relation.page | 95 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 8.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。