Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35444
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾顯雄
dc.contributor.authorKai-Hong Tongen
dc.contributor.author童凱鴻zh_TW
dc.date.accessioned2021-06-13T06:53:06Z-
dc.date.available2012-07-15
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citation王春女,1990,各種氧化型三偖對人類血小板功能及形態的影響,國立清
華大學生命科學研究所博士論文。
朱建儒,2003,探討通氣量對於樟芝醱酵生產生物鹼之影響,國立中央大學化學工程與材料工程研究所碩士論文。
吳昇原,2001,牛樟抽出物對樟芝生長影響之探討,國立臺灣大學森林學研究所碩士論文。
吳德鵬,1995,樟芝微量成分的研究,國立台灣師範大學化學研究所碩士論文。
呂美津,2003,牛樟菇子實體乙醇萃取物誘導HL60細胞凋亡之研究,屏東科技大學熱帶農業暨國際合作研究所碩士論文。
宋祖瑩,2002,樟芝深層培養液抗氧化及抗腫瘤特性之研究,國立中興大學食品科學系博士論文。
李一宏,2002,樟芝菌絲體之培養及其多醣體抗乙型肝炎病毒活性評估,中國醫藥學院中國藥學研究所博士論文。
李宛蓁,2002,樟芝菌絲體培養與生理活性成分生成之研究,東海大學化學工程學系碩士論文。
李炫璋,2002,牛樟芝菌絲體之體內保肝功能評估及其熱水萃物在體外對基質金屬蛋白,國立中興大學食品科學系碩士論文。
范真綺,2004,樟芝固態栽培與液態醱酵菌絲體之成分及其生物活性之研究,南台科技大學化學工程系碩士論文。
高曉薇,1991,臺灣靈芝屬新種樟芝之三萜類成分研究,台北醫學院天然物醫學研究所碩士論文。
張中姿,2002,樟芝菌絲體之甲醇萃取部分對人類肝癌細胞株(HepG2)生
長抑制作用的機轉探討,國立台灣大學生化學研究所碩士論文。
張文菀,2002,不同的液態培養條件對樟芝(Antrodia camphorata)菌絲生長及多醣形態,東海大學食品科學系碩士論文。
許宗銘,1999,靈芝菌(Ganoderma lucidum)轉形系統之研究,國立中興大學植物學研究所碩士論文。
郭淑卿,2002,樟芝醱酵液對大鼠肝臟纖維化及胃腸功能之改善作用,中
國醫藥學院中國藥學研究所碩士論文。
陳思瑋,2004,不同培養時間生產之樟芝醱酵液對癌細胞生長之影響,國
立台灣大學食品科技研究所碩士論文。
陳怡欣,2002,牛樟芝醱酵過濾液對大白鼠肝臟生理機能之影響,中國醫
藥學院營養研究所碩士論文。
程一華,1994,樟芝之成份研究,國立臺灣師範大學化學學系碩士論文。
黃惟敏,1999,樟芝微量成分的研究(Ⅱ),靜宜大學應用化學系碩士論文。
黃惠琴,2001,樟芝菌絲體深層培養之研究,東海大學化學工程學系碩士
論文。
黃鈴娟,2000,樟芝與姬松茸之抗氧化性質及其多醣組成分析,國立中興
大學食品科學研究所碩士論文。
葉怡真,2002,樟芝對血管內皮細胞之影響及保心血管疾病之機制探討,
中國醫藥學院營養研究所碩士論文。
楊書威,1991,中藥樟菇活性成分之研究,國立台灣大學藥學研究所,碩
士論文。
臧穆、蘇慶華,1990,我國台灣產靈芝屬新種—樟芝(型態、定名)。雲南
植物研究。12:395-396。
蔡雁暉,2001,樟芝深層培養液及其多醣體之抗氧化特性 國立中興大學
食品科學系碩士論文。
薛文明,2002,樟芝(Antrodia camphorata)菌絲體培養及粒線體rDNA
序列分析之研究,國立中山大學生物科學系研究所碩士論文。
簡秋源、姜宏哲、陳淑貞,1997,牛樟菇培養性狀及其三帖類成分析之研
究,牛樟生物學及育林樹研討會論文集,133-137。
Belogrudov, G. I., and Lee, P. T. 2001. Yeast COQ4 encodes a mitochondrial
protein required for coenzyme Q synthesis. Archives of Biochemistry and
Biophysics 392: 48–58.
Catalanotto, C., Pallotta, M., Falo, P. R., Sachs, M. S., Vayssie, L., Macino, G.
and Cogoni, C. 2004. Redundancy of the two dicer genes in
transgene-induced posttranscriptional gene silencing in Neurospora crassa.
Molecular and Cellular Biology. 24: 2536–2545.
Cherng, I. H., and Wu, D. P. 1995. Terpenoids from Antrodia cinamomea.
Phytochhemistry. 41: 263-267
Cherng, I. H., and Chiang, H. C. 1995. Three new terpenoids from Antrodia
cinamomea. Journal of Natural Products. 58: 365-371
Cheng, Y. J. 2002. Potential role of tetrandrine in cancer therapy1. Pharmacol
Sin. 23: 1102 -1106.
Dai, Y. Y., and Chuang, C. H. 2003. The protection of Anthrodia camphorata
against acute hepatotoxicity of alcohol in rats. Journal of Food and Drug
Analysis. 11: 177-185.
Donald, K. A. G., and Hampton, R. 1997. Effects of overproduction of the
catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme a reductase on
squalene synthesis in Saccharomyces cerevisiae. Applied and Environmental
Microbiology. 63: 3341–3344.
Fellermeier, M., and Raschke, M. 2001. Studies on the nonmevalonate pathway
of terpene biosynthesis:The role of 2C-methyl-D-erythritol
2,4-cyclodiphosphate in plants. Eur. J. Biochem. 268: 6302–6310.
Guo, S., and Kemphues, K. J. 1995. par-1, a gene required for establishing
polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is
asymmetrically distributed. Cell. 19: 611-620.
Hagase, M., and Oto, J. 2003. Apotosis induction in HL-60 cell and inhibitiob
of topoisomeraseII by triterpene celastrol. Biosci. Biotechnol. Biochem. 67:
1883-1887
He. J., and Feng, X. Z. 2003. Fomlactones A-C, novel triterpene lactones from
Fomes cajanderi. J. Nat. Prod. 66: 1249-1251.
Hoshino, T., and Nakano, S. I. 2004. Squalene–hopene cyclase: final
deprotonation reaction, conformational analysis for the cyclization of
(3R,S )-2,3- oxidosqualene and further evidence for the requirement of an
isopropylidene moiety both for initiation of the polycyclization cascade and
for the formation of the 5-membered E-ring. Org. Bio mol. Chem. 1456-1470
Husselstein-Muller, T., and Schaller, H. 2001. Molecular cloning and
expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from
Arabidopsis thaliana. Plant Mol Biol. 45:75-92.
Kariko´, K., Bhuyan, P., Capodici, J., and Weissman, J. 2004. Small interfering
RNAs mediate sequence-independent gene suppression and induce immune
activation by signaling through toll-like receptor 31. The Journal of
Immunology. 172: 6545–6549.
Kennerdell, J. R., and Carthew, R. W. 2000. Heritable gene silencing in
Drosophila using double-stranded RNA. Nature Biotechnology. 17:896-898
Koller, W., and Scheinpflug, H. 1987. Fungal resistance to sterol biosynthesis
inhibitors: A new challenge. Plant Disease. 71:1066-1074.
Lee, I. H., and Chen, C. T. 2002. Sugar flux in response to carbohydrate-
feeding of cultured Antrodia champhorata, a recently described medicinal
fungus in Taiwan. J Chin Med.13: 21-31.
Lee, T. H., and Lee, S. S. 2001. Monoterpene Glycosides and Triterpene Acids
from Eriobotrya deflexa. J. Nat. Prod. 64: 865-869.
Liang, P. H., and Ko, T. P. 2002. Structure, mechanism and function of
prenyltransferases. Eur.J.Biochem. 269: 3339–3354.
Naito, Y., and Yamada, T. 2004. siDirect: highly effective, target-specific
siRNA design software for mammalian RNA interference. Nucleic Acids
Research. 32:124-129
Napoli, C., and Lemieux, C. 1990. lntroduction of a chimeric chalcone
synthase gene into petunia results in reversible co-suppression of
homologous genes in trans. The Plant Cell. 2: 279-289.
Neema, A., Asif, M., Pawan, M., Raj K. B., and Sunil K. M. 2003. RNA
Interference: Biology, Mechanism, and Applications. Microbilogy and
Molecular Biology Reviews. 67:657-585
Norio Nakamura., Akiko Hirakawa., and Gao, J. J. 2004. Five new maleic and
succinic acid derivatives from the mycelium of Antrodia camphorata and
Ttheir cytotoxic effects on LLC tumor cell line. J. Nat. Prod. 67: 46-48.
Majetich, G., and Wang, Y. 2003. A Synthesis of (+)-Salvadione-A. ORGANIC
LETTERS. 5: 3847-3850.
Morikawa, T., and Kishi, A. 2003. Structures of new friedelane-type triterpenes
and eudesmane-type sesquiterpene and aldose reductase inhibitors from
Salacia chinensis. J. Nat. Prod. 66: 1191-1196.
Parveen, M., and Hasan, M. K. 2004. Response of Saccharomyces cerevisiae to
a monoterpene: evaluation of antifungal potential by DNA microarray
analysis. Journal of Antimicrobial Chemotherapy. 54: 46–55.
Sharma, V., and Walla, S. 2003. An efficient method for the purification and
characterization of nematicidal azadirachtins A, B, and H, using MPLC and
ESIMS. J. Agric. Food Chem. 51: 3966-3972.
Sharp, P. A. 2001. RNA interference—2001. Genes and Developmen. 15:
485–490.
Shen, C. C., and Kuo, Y. C. 2003. New ergostane and lanostane from Antrodia
camphirata. J Chin Med. 14: 247-258.
Shen, Y. C., and Yang, S. W. 1996. Zhankuic acid F, a new metabolite from a
formosan fungus Antrodia cinnamomea. Plant Medica. 63:86-88.
Shiao, M. S. 2003. Natural products of the medicinal fungus Ganoderma
lucidum:Occurrence, biological activities, and pharmacological functions.
The Chemical Record. 3: 172–180.
Suzuki, M., and Kamide, Y. 2004. Loss of function of
3-hydroxy-3-methylglutaryl coenzyme A reductase1(HMG1)in Arabidopsis
leads to dwarfing,early senescence and male sterility,and reduced sterol
levels. The plant Journal. 37: 750-761.
Terreaux, C., and Mahabir, M. P. 1996. Triterpenes and triterpene glycosides
from paradrymonia Macrophylla. Phytochhemistry. 42: 495-499.
Venkateswarlu, K., and Denning, D. W. 1996. Comparison of D0870, a new
triazole antifungal agent, to fluconazole for inhibition of Candida albicans
cytochrome P-450 by using in vitro Aassays. Antimicrobial Agents and
Chemptherapy. 40: 1382–1386.
Veen, M., and Stahl, U. 2003. Combined overexpression of genes of the
ergosterol biosynthetic pathway leads to accumulation of sterols in
Saccharomyces cerevisiae. FEMS Yeast Research. 4: 87-95.
Wang, B. G., and Jai, Z. J. 1998. Triterpenes and triterpene glycosyl ester
from Rubus Pungens Camb.var OLDHAMII. Phytochhemistry. 49: 185-188.
Wu, S. H., and Leif Ryvarden. 1997. Antrodia camphorate
(“niu-chang-chih”), new combination of a medicinal fungus in Taiwan.
Bot. Bull. Acad. Sin. 38: 273-275
Yang, S. W., and Shen, Y. C. 1996. Steroids and triterpenoids of Antrodia
cinnampmea-A fungus parasitic on Cinnamomea micranthum.
Phytochhemistry. 41:1389-1392
Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P. 2000. RNAi:
double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to
23 nucleotide intervals. Cell. 2000 31: 25-33.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35444-
dc.description.abstract樟芝是台灣特有具抗癌功效之真菌,本實驗欲獲得與樟芝三萜類生合成相關的基因群組之資訊,藉以進行樟芝具抗癌活性三萜類的相關研究,因此使用樟芝菌絲體建構cDNA library,再以經過定序的cDNA序列與NCBI資料庫進行序列比對,並從中篩選出ergosterol biosynthesis protein,Putative mevalonate kinase,Diphosphomevalonate decarboxylase,Farnesyl cysteine carboxyl methyltransferase,squalene epoxidase及Lanosterol 14 α-demethylase等可能與三萜類生合成相關且具顯著相似性之六個基因序列,並以此設計專一引子對,以gDNA為模板進行PCR,所得產物經定序、比對驗証確為上述基因之片段後,以DIG標識作為探針,並與所建構之Fosmid Library進行菌落雜合(colony hybridization),篩檢Fosmid DNA library中可能含有三萜類生合成基因群組的菌株,經實驗證實,上述六個基因並無組成任何基因群組。為進一步了解具抗癌活性的三萜類其生合成途徑,利用含fluconazole、butenafin、compactin等可阻斷三萜類代謝途徑的藥物培養樟芝菌絲,並將菌絲以甲醇萃取以進行HepG2及A549等癌細胞毒性測試與HPLC及TLC之分析,實驗結果顯示,compactin處理並未對樟芝的抗癌產生顯著影響,藉由butenafine處理使樟芝三萜類產生顯著改變,但其抗癌功能仍無明顯變化,而使用fluconazolet處理則使樟芝三萜類及其抗癌活性有明顯下降情形,因此猜測,對HepG2具有特異毒殺作用的三萜類產物可能是位於lanosterol 14α-demethylase下游之代謝產物,為確認此一假設,目前正利用siRNA的技術進行lanosterol 14α-demethylase基因之靜默化,期望藉此確定對HepG2肝癌細胞具有抑制效應的三萜類成分及其生合成路徑。zh_TW
dc.description.abstractAntrodia cinnamomea is a fungus endogenous to Taiwan and thought to have anticancer activities. In current study we attempt to analyze and elucidate the genes that possibly involved with terpenoids biosynthesis. Six putative genes:ergosterol biosynthesis protein,Putative mevalonate kinase,Diphosphomevalonate decarboxylase,Farnesyl cysteine carboxyl methyltransferase,squalene epoxidase and Lanosterol 14 α-demethylase , were identified from the A. cinnamomea cDNA library after blastX with nr NCBI database, and primers were designed to amplify these specific genes using gDNA of A. cinnamomea as template by polymerase chain reaction. The obtained gene products were further sequenced, and their identies verified, labeled with DIG and used as probe to screen the constructed A. cinnamomea Fosmid library. The results from colony hybridization revealed these genes were not allocated in a cluster. In order to investigate further on the possibility of terpenoids in anticancer activity, we used flucanazole, butenafin, and compactin, which are thought to block terpenoids biosynthesis pathway at specific steps. The effect of these inhibitors on A. cinnamomea were analyzed using High Performance Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC) in combination with the bioactivity assay using liver cancer cell Hep G2 and lung cancer cell A549. The results showed both the biosynthesis of terpenoids and the anticancer activity of A. cinnamomea were not significantly affected by compactin; with respect to butenafin, through the terpenoids varied greatly either qualitatively or quantitatively, the anticancer activity was not changed in a regular pattern; while flucanazole markedly reduced the biosynthesis of terpenoids as well as the anticancer activity. Consequently, it is suggested that the downstream terpenoids products mediated by lanosterol 14α-demethylase was mainly ascribed to the anticancer activity. Currently,we are conducting lanosterol 14 α-demethylase gene silencing by using siRNA to prove the actual role played by these gene products in suppression of the liver cancer cell Hep G2.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:53:06Z (GMT). No. of bitstreams: 1
ntu-94-R91633014-1.pdf: 1936372 bytes, checksum: d4f9bf0d346b3210b32d3e29150064d2 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents前言…………………………….………………….1
前人研究
ㄧ、樟芝
1. 樟芝之命名沿革及其特徵……………………………………….….2
2. 牛樟菇的生理活性成分…………………………….………….…..3
3. 牛樟菇的培養條件及成分影響…………………………….….…..4
二、牛樟菇的藥用功效研究
1. 抗癌作用及其機制 …………………….…………………………..6
2. 抗氧化能力 ……………………………………..……………………7
3. 保肝作用 ………………………………………………………….…8
三、 樟芝三帖類(triterpenoids)基因研究
1. 三帖類(triterpenoids)簡介……………………………………….9
2. 樟芝三帖類(triterpenoids)之簡介………………………………10
3. 樟芝triterpenoids生合成之基因群組 ………………………….…11
四、 核醣核酸干擾(RNA interfrence;RNAi)
1. 核醣核酸干擾的發現史……………………………………….……12
2. 核醣核酸干擾的作用機制……………………………………….…13
3. siRNA的設計 ………………………………………………….……14
材料與方法
一、 菌株培養
1.供試菌株………………………………………………………………20
2. 培養基 ………………………………………………………………20
3. 培養時間……………………………………………………….……22
4. 通氣量……………………………………………………….………22
二、建構cDNA library及三萜類合成條件之確認
1. RNA萃取及純度、完整性檢驗 …………………………….………22
2. cDNA library 建構……………………………………………….…23
3. 以建構cDNA library其三萜類生合成培養條件之確認………………………………………………………………………….…23
三、尋找三萜類生合成相關基因
1. 尋找三萜類生合成相關基因及引子對設計……………….………23
2. 三萜類生合成相關基因之選殖……………………………….……24
3. 三萜類生合成相關基因之探針製備 ………………………………25
四、Fosmid DNA library建構
1. DNA萃取………………………………………………… ……….25
2. Fosmid library kit………………………………… …….……….26
3. Fosmid library colony hybridization……………………………28
五、樟芝培養條件與三萜類生合成基因之表現
1. 萃取不同培養條件的樟芝RNA………………………………….…29
2. 利用RT-PCR確認三萜類生合成相關基因表現情形………………29
3. 利用TLC及細胞培養確定震盪與否的影響………………….……29
4. 萃取不同培養時間的樟芝菌絲內含物………………………….…29
5. 利用TLC及細胞離體毒性試驗確定培養時間不同的影響…….…30
六、有效三萜類之種類及生成途徑
1. 利用抗真菌藥物阻斷三萜類的可能生合成途徑………….………30
2. 萃取樟芝內含物……………………………………………….……30
3. 利用TLC確定抗真菌藥物之效果……………………………….…31
4. 利用細胞培養尋找有效三萜類生合成途徑及抗癌機制……….…31
5. 利用HPLC找出有有抗癌功效的三萜類……………………………32
七、利用shRNA確認有效三萜類之基因徑
1. 大腸桿菌電穿孔轉形pAN7-1………………………………………33
2. Hygromycin B 敏感度測試…………………………………………33
3. shRNA設計與製備……………………………………………………33
4. shRNA載體構築………………………………………………………34
5.原生質體製備…………………………………………………………34
6. PEG轉型作用…………………………………………………………34
7. 樟芝轉型株篩選與分析………………………………………….…35
結果與討論
一、產生最多種三萜類的培養條件………………………39
二、三萜類生合成相關基因選殖…………………………39
三、Fosmid library 建構與選殖…………………………40
四、樟芝萃取物對不同細胞的影響………………………41
五、樟芝培養條件與三萜類生合成相關基因之表現……………………………………………………………………………41
六、有效三萜類之種類及其生合成途徑………………42
七、利用shRNA確認有效三萜纇之基因………………44
結論與未來展望
結論………………………………………………………………….……88
Future work…………………………………………………………………88
未來展望…………………………………………………………….…89
參考文獻………………………………………………………………90











圖目錄
圖一:樟芝子實體外觀…...……………………………………….……15
圖二:牛樟芝子實體模式標本之顯微特徵……………………….……15
圖三:異戊二烯單體結構………...…………………………………….16
圖四:由異戊二烯組成的各種萜類………………. …………..……….16
圖五:樟芝氧化態三萜類…………………………………………….….17
圖六:terpeniods生合成途徑概略………...………………………..…18
圖七:siRNA 作用示意圖…………………………………………….…19
圖八:pAN7-1電泳…………………………………………...…………36
圖九:pAN7-1之限制酶切位示意圖……………………………………37
圖十:震盪培養與靜置培養之三萜類TLC比較……………………….45
圖十一:不同培養條件下樟芝三萜纇之HPLC分析……………...…….46
圖十二:靜置培養32與震盪培養32天之HPLC分析比較…………….47
圖十三:三萜類生合成相關基因之PCR產物及探針………………….48
圖十四:三萜類生合成相關基因之PCR產物及探針…………………...49
圖十五:所建構Fosmid library的不同選殖株(clone),以限制酶
切割質體……………………………………………………..50
圖十六:FCCM、EBP、PMK、DPMD的Fosmid clone與DNA對照PCR…...…..51
圖十七:LAN和SE的Fosmid clone與DNA對照PCR………………..…...52
圖十八:靜置培養14天之ACME對不同癌細胞之細胞毒殺測試……....53
圖十九:靜置培養21天之ACME對不同癌細胞之細胞毒殺測試……54
圖二十:靜置培養32天之ACME對不同癌細胞之細胞毒殺測試……55
圖二十一:震盪培養使squalene大量產生……….…………………..56
圖二十二:RT-PCR顯示震盪培養對三萜類生合成上游基因的影響…57
圖二十三:震盪培養21天與靜置培養21天對纖維母細胞株3T3之影
響...……………………………………………………….…58
圖二十四:震盪培養21天與靜置培養21天對肺腺癌細胞株A549之影
響………………………………………………………….…59
圖二十五:震盪培養21天與靜置培養21天對肝癌細胞株HepG2之影
響…...…………………………………………………….….60
圖二十六:培養時間不同,其單位濃度ACME對3T3細胞株的影響….61
圖二十七:培養時間不同,其單位濃度ACME對A549肺癌細胞株的影
響……………………………………………………….....….62
圖二十八:培養時間不同,其單位濃度ACME對HepG2肝癌細胞株的影
響…...…………………………………………………….….63
圖二十九:加入compatin靜置培養21天所造成的TLC片影響……….64
圖三十:經compatin處理之樟芝三萜纇HPLC分析比較…….……….65
圖三十一:加入butenafine靜置培養21天所造成的TLC片影響……66
圖三十二:經butenafine處理之樟芝三萜纇HPLC分析比較……….67
圖三十三:加入fluconazole靜置培養21天所造成的TLC片影響…68
圖三十四:加入fluconazole靜置培養32天所造成的TLC片影響…69
圖三十五:經fluconazole處理之樟芝三萜纇HPLC分析比較…. …..70
圖三十六:compatin靜置培養21天對肝癌細胞株HepG2毒殺作用比較………………………………………………………….…71
圖三十七:butenafine靜置培養21天對肝癌細胞株HepG2毒殺作用之比較………………………………………………………..72
圖三十八:fluconazole靜置培養21天對肝癌細胞株HepG2毒殺作用之比較……………………………………………………...73
圖三十九:compatin靜置培養21天對肺癌細胞株A549毒殺作用之比較……………………………………………………………..74
圖四十:butenafine靜置培養21天對肺癌細胞株A549毒殺作用之比較……………………………………………………………..75
圖四十一:fluconazole靜置培養21天對肺癌細胞株A549毒殺作用之比較……………………………………………………...76
圖四十二:compatin靜置培養21天對3T3纖維母細胞毒殺作用之比較………………... ………... ………...…………………….77
圖四十三:butenafine靜置培養21天對3T3纖維母細胞毒殺作用之比較…………………………...…………...………….....….78
圖四十四:fluconazole靜置培養21天對3T3纖維母細胞毒殺作用之比較…...……………………….. …………...…….…….….79
圖四十五:可能對肝癌細胞具有特異專一毒殺力的三萜類………….80
圖四十六:樟芝對不同濃度hygromycin B的抗性檢測………………81
圖四十七:樟芝之EST contig 170………………………………………82
圖四十八 :lanosterol 14α-demethylase具高度靜默化潛力片段83
圖四十九:lansh經MspI酶切……………..……………………………84
圖五十:ansh經MspI酶切純化之後進行黏結完成………..…………..85






表目錄
表一:三種阻斷三萜類生合成藥物之作用位置及其影響……………38
表二:六個與萜類生合成相關基因之引子對……………………….…86
表三:六個與三萜類生合成相關基因在fosmid library 對應的菌株
編號及hybridization結果……….…………………………….87
dc.language.isozh-TW
dc.subject類zh_TW
dc.subject三&#33820zh_TW
dc.subject牛樟芝zh_TW
dc.subjecttritenpeneen
dc.subjectAntrodia cinnamomeaen
dc.title牛樟芝萜類生理活性探討及其生合成相關基因之分析zh_TW
dc.titleAnalysis of Antrodia cinnamomea biological activity and the terpinoid biosynthesis related genesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈湯龍,李宗徽,葉信宏,劉瑞芬
dc.subject.keyword牛樟芝,三&#33820,類,zh_TW
dc.subject.keywordAntrodia cinnamomea,tritenpene,en
dc.relation.page96
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved