Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35430
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵
dc.contributor.authorGuo-Ding Wangen
dc.contributor.author王國鼎zh_TW
dc.date.accessioned2021-06-13T06:52:28Z-
dc.date.available2006-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-28
dc.identifier.citation王松永 (1993) 木材之燃燒熱值與其影響因子之探討。林產工業12(2): 35-45。
王鳳友、王業遽 (1991) 紅松針闊葉混交林凋落物的生態研究(II)-凋落物養分含量的動態及養分歸還。森林生態系統定位研究第一集。東北林業大學出版。238-249頁。
邵力平、沈瑞祥、張素軒、項存悌、譚松山編 (1988) 真菌分類學。中國林業出版社,北京。370頁。
邱煌升 (2003) 臺灣二葉松松針精油抗菌性之研究。國立台灣大學森林學研究所碩士論文。
林世宗 (1998) 棲蘭山闊葉林枯落物及其養分之變動。中華林學季刊 31(2): 115-130。
林昭遠、呂金誠、陳明義 (1985) 林火對於台灣二葉松林地土壤團粒穩定性之影響。中華林學季刊。18(3): 45-52。
林朝欽 (1992) 森林燃料系統及其對林火之影響。台灣林業。18(12): 22-25。
林朝欽 (1993) 國有林大甲溪事業區之森林火災及防線。林業試驗所研究報告季刊。8(2): 159-167。
林朝欽 (1995) 森林火災危險度預測系統之研究。林業試驗所研究報告季刊。 10(3): 325-330。
林朝欽 (1999) 台灣二葉松林燃燒機率之模式推導。台灣林業科學。14(3):332-339。

林國銓,張乃航,王巧萍,劉瓊霖 (2002) 福山闊葉林四種綠葉的分解及氮動態變化。台灣林業科學。17(1): 75-85。
高清 (1977) 台灣省林相變更造林技術的考察與檢討。台灣大學農學院研究報告。17(2): 230-240。
陳瑞青(1992) 台灣菌類資源調查之歷史與現況。中央研究院植物研究所。台北。119-130頁。
陳明義 (1997) 林火的行為與經營。國立編譯館。台北。725-749頁。
陳明義,施纓煜 (1998) 野火影響環山地區植群之研究。國家公園學報。8(2): 155-165。
張豐吉、杜明宏 (1987) 台灣二葉松各部位材之製漿性研究。林產工業6(1): 51-60。
程天立 (1978) 台灣二葉松之育林及其成敗原因之探討。國大台灣大學碩士論文。
黃金城、林翰謙、黃秋惠、吳幸芳、葉明筠 (2003) 台灣雲葉、青剛櫟及相思樹作為防火樹種之可行性探討。林產工業 22(2): 129-138。
雷明遠 (1992) 熱分析與氧氣指數試驗法應用於木材抗燃劑之選配。國立台灣大學森林學研究所博士論文。
楊秋霖 (2000) 梨山與東峰森林大火過後該森林生態系之復建與救火系統建立。台灣林業。26(34): 6-12。
鄭邵材 (1998) 影響耐火被覆材料耐火性能因子之研究。國立台灣科技大學碩士論文。153頁。
劉棠瑞,蘇鴻傑 (1978) 大甲溪上游台灣二葉松天然林之群落組成及相關環境因子之研究。台大實驗林研究報告。121: 207-239。
劉興旺 (1985) 柳杉枯枝落葉量及養分含量年齡與季節變動。國立台灣大學森林研究所碩士論文。
顏江河,陳佳慧 (1999) 惠蓀林場三種不同林分枯枝落葉量與枝葉層分解速率之季節性變化。林業研究季刊。21(4): 57-64。
Aber, J. D. and J. M. Melillo (1980) Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Canadian Journal of Botany 58: 416-421.
Anderson, J. M. and M. J. Swift (1983) Decomposition in tropical forests. In: Sutton SL, Whitmore TC, Chadwick AC, editors. Tropical rain forest: ecology and management. Oxford: Blackwell Scientific Publications, p289-309.
Arbeloa, M., J. Deleselelac, G. Goma, J. C. Pommier (1992) An evaluation of the potential of lignin peroxidases to improve pulps. Tappi Journal 75(3): 215-221.
Baath, E., Frostgard, A., Pennanen, T., Fritze, H. (1995) Microbial community structure and pH response in relation to soil organic-matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biology and Biochemistry 27 (2): 229-240.
Bajpai, P. (1999) Application of enzyme in pulp and paper industry. Biotechnological progress 15(2): 147-157.
Berg, B. (1986) Nutrient release form litter and humus in coniferous forest soils-a mini review. Scandinavian Journal of Forest Research 1: 359-369.
Berg, B., C. Mcclaugherty, A. V. De Santo, M. B. Johansson and G. Ekbohm (1995) Decomposition of litter and soil organic matter-can we distinguish a mechanism for soil organic matter buildup? Scandinavian Journal of Forest Research 10: 108-119.
Berg, B. and H. Staaf (1980) Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition In: Persson T, editor. Structure and function of northern coniferous forests—an ecosystem study Ecol Bull (Stockholm) 32: 373-390.

Berg, B. and H. Staaf (1981) Leaching, accumulation and release of nitrogen in decomposing forest litter. In: Clark, F. E. and T. Rosswall.(eds.) Terrestrial Nitrogen Cycles-Processes, Ecosystem Strategies and Management Impacts. Ecological Bulletins 33: 163-178.
Berg, B., and H. Staaf (1987) Release of nutrients from decomposing white birth leaves and Scots pine needle litter. Pedobiologia 30: 55-63.
Bloomfield, J., K. A. Vogt, and D. J. Vogt (1993) Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant and Soil 150: 233-245.
Bosatta, E. and H. Staaf (1982) The control of nitrogen turn-over in forest litter. Oikos 39: 143-151.
Brinson, M. M., H. D. Bradshaw, R. N. Holmes and J. B. Elkins (1980) Litterfall, stemflow, and throughfall nutrient fluxes in an alluvial swamp forest. Ecology 61: 827-835.
Broido, A. (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. Journal of polymer science 7: 1761-1773.
Carroll, F. E., E. Muller, and B. C. Sutton (1977) Preliminary studies on the incidence of needle endophytes in some European conifers. Sydowia 29: 87-103.
Carroll, G. C. and F. E. Carroll, (1978) Studies on the incidence coniferous needle endophytes in the Pacific Northwest. Canadian Journal of Botany 56: 3034-3043.
Cox, P., Wilkinson, S.P., Anderson, J.M. (2001) Effects of fungal inocula on the decomposition of lignin and structural polysaccharides in Pinus sylvestris litter. Biology and Fertility Soils 33 (3): 246-251.

Cromack, K. Jr., and C. D. Monk (1975) Litter production, decomposition, and nutrient cycling in a mixed hardwood watershed and a white pine watershed. In: Howell F.G., J. B. Gentry, M. H. Smith editors. Mineral cycling in southeastern exosystems. Washington, D. C. :United States Energy Research and Development Administration, symposium series CONF-740513. p 609-624.
Demirbas, A. (1997) Calculation of higher heating value of biomass fuels. Fuel 76: 431-434.
Demirbas, A. (1998a) Fuel properties and calculation of higher heating value of vegetable oil. Fuel 77: 1117-1120.
Demirbas, A. (1998b) Determination of combustion heat of fuels by using noncalorimetric experimental data. Energy Education Science and Technology 1: 7-12.
Demirbas, A. (2002) Relationships between lignin contents and heating values of “biomass”. Energy Conversion and Management 42: 183-188.
Edmonds, R. L. (1984) Long-term decomposition and nutrient dynamics in Pacific silver fir needles in western Washington. Canadian Journal of Forest Research 14: 395-400.
Facelli, J. M., Steward and T. Pickett (1991) Plant litter: its dynamics and effects on plant community structure. Botanic Review 57: 1-32.
Felipe, G. S. (2001) Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality. Forest Ecology and Management 152: 85-96.
Fioretto, O., A. Musacchio, G. Andolft and A. V. de S(t) (1998) Decomposition dynamics of litters of various pine species in a Corsican pine forest. Soil Biology and Biochemistry 30(6): 721-727.
Gholz, H. L., C. S. Perry, W. P. Cropper, and L. C. Hendry (1985) Litterfall, decomposition, and nitrogen and phosphorus dynamics in a chronosequence of slash pine (Pinus elliotii) plantations. Forest Science 31: 463-478.
Gholz, L. H., A. W. David, M. S. Stephen, M. E. Harmon, J. P. William (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6: 751-765.
Gosz, J. R. (1981) Nitrogen cycling in coniferous ecosystems. In: Clark, F. E. and T. Rosseall. (eds.) Terrestrial nitrogen cycles-processes, ecosystem strategies and management impacts. Ecological Bulletins 33: 405-426.
Gosz, J. R. (1984) Biological factors influencing nutrient supply in forest soils. In: Bowen, G. D. and E. K. S. Nambiar.(eds.) Nutrition of Plantation Forests. p 19-146.
Hawksworth, D. L. (1991) The fungi dimension of biodiversity: magnitude significance, and conservation. Mycological Research 95: 641-655.
Herbohn, J. L. and R. A. Congdon (1998) Ecosystem dynamics at disturbed and undisturbed sites in North Queensland wet tropical rain forest. III. Nutrient returns to the forest floor through litterfall. Journal of Tropical Ecology 14: 217-229.
Hernandez-Coronado, K. J., Hernandez, M., Centenera, F., Perez-Leblic, M. I., Ball, A. S. and Arias, M. E. (1997) Chemical characterization and spectroscopic analysis of the solubilization products form wheat straw produced by Streptomyces strains grown in solid-state fermentation. Microbiology 143: 1359-1367.
Jama, B. A., P. K. R. Nair. (1996) Decomposition and nitrogen mineralization patterns of Leucaena leucocephala and Cassia siamea mulch under tropical semiarid conditions in Kenya. Plant and Soil 179: 275-285.
Jones, J. C, H. Rahmati, G. C. Wake (1991) The unpiloted ignition of eucalyptus leaves treated as a parallel reaction system. Journal of Fire Sciences 9: 311-328.

Kenneth, R. M., and P. C. Cheo (1971) Effect of leaf thickness on lgnitibility. Forest Science 17: 475-478.
Keyser, P., T. K. Kirk., and J. G. Zeikus (1978) Ligninolytic enzyme of Phanerochate chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. Journal of Bacteriology 135: 790-797.
Kim, C., T. L. Sharik, M. F. Jurgensen (1996) Canopy cover effects on mass loss, and nitrogen and phosphorus dynamics from decomposing litter in oak and pine stands in northern Lower Michigan. Forest Ecology and Management 80: 13-20.
Kimmins, J. P. (1987) Forest Ecology. Macmillan publishing company, New York. 531pp.
Klemmedson, J. O. (1992) Decomposition and nutrient release from mixtures of Gambel oak and ponderosa pine leaf litter. Forest Ecology and Management 47: 349-361
Kunihiko H. and K. Futai(1996) Variation in fungal endophyte populations in needles of the genus Pinus. Canadian Journal of Botany 74: 103-114.
Leoni, E., P. Tomi, B. Khoumeri, N. Balbi and A. F. bernardini (2001) Thermal degradation of pinus pinaster needles by DSC patr1: dehydration kinetics. Journal of Fire Sciences 19(5): 379-397.
Maheswaran, J., P. M. Attiwill (1987) Loss of organic matter, elements, and organic fractions in decomposing Eucalyptus microcarpa leaf litter. Canadian Journal of Botany 65: 2601-2606.
Meentemeyer, E. O. B. and R. Tompson (1982) World patterns and amounts of terrestrial plant litter production. Bioscience 32: 125-128.
Melillo, J. M., J. D. Aber, and J. F. Muratore (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63(3): 621-626.
Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, and K. J. Nadelhoffer (1989) Carbon and nitrogen dynamic along the decay continuum: plant litter to soil organic matter. Plant and Soil 115: 189-198.
Mesquita, R. De C. D., S. W. Workman and C. L. Neely (1998) Slow litter decomposition in a Cecropia-domincated secondary forest of central Amazonia. Soil Biology and Biochemistry 30(2): 167-175.
Miyanishi, K. (2001) Duff comsumption. pp: 437-477. In: E. A. Johnson and K. Miyanishi, eds. Forest Fires: Behavior and Ecological Effects. Academic Press, San Diego, U.S.A. 594 pp.
Monleon, V. J. and J. C. Kermit (1996) Long-term effects of prescribed underburing on litter decomposition and nutrient release in ponderosa pine stands in central Oregon. Forest Ecology and Management 81: 143-152.
Montgomery, K. R. and P. C. Cheo (1971) Effect of leaf thickness on Ignitibility. Forest Science 17: 475-478.
Olson, J. S. (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44(2): 322-331.
Pedersen, L. B. and J. Bille-Hansen (1999) A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. Forest Ecology and Management 114: 55-70.
Petrini, O. (1986) Taxonomy of endophytic fungi of aerial plant tissues. pp: 175-186. In: N. J. Fokkema and J. Van Den Heuvel, eds. Microbiology of the Phyllosphere. Cambridge University Press. U. K. 392 pp.
Philpot, C. W. (1970) Influence of mineral content on the pyrolysis of plant materials. Forest Science 16: 461-471.
Prescott, C. E. (1995) Does nitrogen availability control rates of litter decomposing in forests. Plant and Soil 168: 83-88.
Regina, I. S. and T. Tarazona (2001) Nutrient cycling in a natural beech forest and adjacent planted pine in northern Spain. Forestry 74(1): 11-28.
Reinertsen, S. A., L. F. Elliott, V. L. Cochran, and G.. S. Campbell (1984) Role of available carbon and nitrogen in determining the rate of wheat straw decomposition. Soil Biology and Biochemistry 16: 459-464.
Robert, L. T. (1987) Soil organic matter biological and ecological effects.,John Wiley and Sons Inc. p 1-53.
Ryszard, L., N. Maria, and M. Maciej (1995) The dynamics of chemical elements in forest litter. Ecology 76(5): 1393-1406.
Sandhu, J., M. Shinha, R. S. Ambasht (1990) Nitrogen release from decomposing litter of Leucaena Leucocephala in the dry tropics. Soil Biology and Biochemistry 22(6): 859-863.
Schafizadeh, F. and P. P. S. Chir (1977) Thermal deterioration of wood. In wood technology: chemical aspects, ACS Symp. Washington D. C. p 57-81.
Schimel, J. P., S. Helter. and I. J. Alexander (1992) Effects of starch additions on N turnover in Sitka spruce forest floor. Plant and Soil 139: 139-143.
Schlesinger, W. H., and M. M. Hasey (1981) Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology 62: 762-774.
Sinha, A. (1997) Release of nitrogen, phosphorus and potassium from the decomposing leaf litter of a tropical natural forest. Journal of Tropical Ecology 9(3): 431-433.
Smith, C. K., H. L. Gholz and F. De A. Oliveira (1998) Fine litter chemistry, early-stage decay, and nitrogen dynamics under plantations and primary forest in lowland Amazonia. Soil Biology and Biochemistry 30(14): 2159-2169.

Songwe, N. C., D. U. U. Okali, and F. E. Fasehun (1995) Liter decomposition and nutrient release in a tropical rainforest, Southern Bakundu forest reserve, Cameroon. Journal of Tropical Ecology 11: 333-350.
Stevens, P. A., M. Hornung and S. Hughes (1989) Solute concentrations, and major nutrient cycles in a mature sitka spruceplantation in Beddgelert Forest North Wales. Forest Ecology and Management 27: 1-20.
Takeda, H. (1998) Decomposition processes of litter along a latitudinal gradient. In: Environmental forest science. Kluwer academic publishers. Kyoto University, Japan. pp: 197-206.
Taylor, B. R. (1998) Air-drying depresses rates of leaf litter decomposition. Soil Biology and Biochemistry 30(3): 403-412.
Turner, J. (1975) Nutrient cycling in a Douglas-fir ecosystem with respect to age and nutrient stands. Ph. D. Thesis, University of Washington.
van Wesemael B. (1993) Litter decomposition and nutrient distribution in humus profiles in some Mediterranean forests in southern Tuscany. Forest Ecology and Management 57: 99-114.
Vogt, K. A., C. C. Grier and D. J. Vogt (1986) Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Advances in Ecological Research 15: 303-377.
Wedderburn, M. E., and J. Carter (1999) Litter decomposition by four functional tree types for use in silvopastoral systems. Soil Biology and Biochemistry 31(3): 455-461.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35430-
dc.description.abstract大甲溪事業區45林班地之34年生之台灣二葉松林地由基本熱性質分析及差示掃描熱卡計的測定,提供燃料燃燒的熱傳導及延散特性的資料。各試材除活松針外以103 ℃處理之樣品彈氧熱卡計發熱量皆高於70 ℃處理之發熱量。枯落松針經過分解後總發熱量低於活松針。而燃料化學成分不同,由其DSC曲線特徵之差異,有助了解燃料的基本特性。本研究亦發現在輕質燃料中活松針最易熱解。且由活松針與上下層枯落松針之高低溫熱解曲線之變化,說明松葉腐化過程對林分整體熱含量之減低有其作用。
台灣二葉松(Pinus taiwanensis)針葉經由枝葉包(Litter bag)分解試驗得知,隨處理時間增加,烘乾重持續下降。施加氮肥之枝葉包在分解初期分解速率較未施加氮肥者佳,兩者依照分解速率指數模式算出k值(k value)分解18個月後分別為0.52(+N)、0.52(-N)。醇苯抽出物隨處理時間增加而持續降低;卡拉森(Klason)木質素隨處理時間比例有上升的趨勢。由彈氧熱卡計(Oxygen bomb calorimeter)測得二葉松枯枝單位發熱量(Unit heat)與總發熱量(Total heat)皆有下降之趨勢,且以施加氮肥者下降速度較快,此加速效果持續到處理時間第5個月。施加氮肥可在短時間內加速分解的進行,降低總發熱量。
內生真菌能夠在寄主植物體內達成共生或互生的生活方式,但並不會造成寄主的致病性,而某些真菌有某些程度的寄主專一性(Host specificity)。台灣二葉松林分鬱閉,難以分解的針葉,往往被認為是助長森林火災的重要因子,能加速地面松針的分解,也能降低森林火災蔓延的風險。本研究從台灣二葉松(Pinus taiwanensis)針葉中,依不同形態共分類出58株不同內生真菌。初步鑑定成果,6株屬於Xylaria sp.,12株屬於腔孢菌綱(Coelomycetes)。以分解能力對這些內生真菌中作初步鑑定後,發現對木質素、木聚醣、醯化纖維素、纖維素具有分解能力的菌株分別有20、17、23、25株。上述結果顯示台灣二葉松針內部真菌相具有高度生物多樣性,並能分解各種基質,足証內生真菌在未來應用的潛力。
zh_TW
dc.description.abstractWe can realize the basic properties of Pinus taiwanensis by DSC, and these tests will provide how fuels burn and their heat conductivities. At 120 ℃, carbohydrates will dehydrate first, and decompose above 380 ℃.We can understand the fuels properties by different DSC diagram. At the same time, the second products of trunk after pyrolyzing will pyrolyze again at higher temperature; this potential of continuous burning can’t be neglected. Our research finds that the living needles can pyrolyze easily. The decomposition of needles can result in the total reduction of heat of forest stand from DSC thermogram.
The oven dry weight of Pinus taiwanensis litterbag decreases with treating time. The fertilized litterbag has higher decomposition rate than those of unfertilized ones; the k value is 0.52(+N) and 0.52(-N) after 18 months. Extractive content decrease with time; klason lignin increases oppositely. The unit heat and total heat of Pinus taiwanensis litter decrease estimated by oxygen bomb calorimeter; fertilized litterbag decrease as faster and the effect continued to the fifth month. Fertilization can speed up the decomposition and decrease total heat in a short time.
Endophytes are able to dwell in host plant body by symbiosis and mutalism, but they are not pathogenis. Endophytes are host specific and can be isolated from many softwoods. Endophytes have comprehensive enzyme system, and can play initial role at litter degradation. Crowns of Pinus taiwanensis stands are fully developed, and accumulation of obstinate needles generally thought to assist spread of recent forest fires. Hence, measures to accelerate litter decomposition can decrease risks of fire spread by reducing fuel accumulation. Enzyme systems of fungi have great application potential in pulp and paper industry. This work morphologically isolated 58 endophytes from Pinus taiwanensis; among them, 6 strains belong to Xylaria sp., 12 strains belong to Coelomycetes. After screened by plate assays, 20, 17, 23, 25 strains were found to have degradation capabilities for lignin, xylan, carboxyl methyl cellulose and celluloses, respectively. Hence, this study demonstrated biodiversity of Pinus taiwanensis endophytes and their future applicability.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:52:28Z (GMT). No. of bitstreams: 1
ntu-94-R92625015-1.pdf: 3610729 bytes, checksum: ee1bd0704dba9376cf343ac21ad7ee2c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents謝誌---------------------------------------------------------------------------------I
摘要------------------------------------------------------------------------------- Ⅱ
Abstract -------------------------------------------------------------------------- Ⅲ
目錄------------------------------------------------------------------------------- Ⅳ
表目錄---------------------------------------------------------------------------- Ⅵ
圖目錄-----------------------------------------------------------------------------Ⅶ
壹、前言----------------------------------------------------------------------------1
貳、文獻回顧----------------------------------------------------------------------3
一、林火危害及其因子-----------------------------------------------------3
二、地面燃料的熱性質-----------------------------------------------------4
三、地面燃料分解機制-----------------------------------------------------5
四、真菌的應用價值------------------------------------------------------10
五、內生真菌的生態地位------------------------------------------------10
參、材料與方法------------------------------------------------------------------14
一、試驗流程---------------------------------------------------------------14
二、生育地描述------------------------------------------------------------15
三、試驗材料---------------------------------------------------------------16
(一)台灣二葉松------------------------------------------------------16
(二)松針內部真菌---------------------------------------------------16
四、試驗方法---------------------------------------------------------------16
(一)台灣二葉松各部位熱性質分析------------------------------16
1.樣品處理------------------------------------------------------16
2.彈氧熱卡計---------------------------------------------------16
3.差示掃瞄熱卡計測定---------------------------------------17
4.熱重量損失分析---------------------------------------------18
(二) 地面二葉松針枝葉包分解動態調查----------------------18
1.台灣二葉松枝葉包之設立及採樣------------------------18
2.化學性質分析------------------------------------------------18
(1)抽出物分析--------------------------------------------19
(2)木質素分析--------------------------------------------19
3彈氧熱卡計---------------------------------------------------19
4元素分析------------------------------------------------------20
(三) 針葉內部真菌之分離與鑑定-------------------------------20
1.真菌之分離---------------------------------------------------20
2.分離真菌之鑑定---------------------------------------------21
3.分離真菌酵素活性測試------------------------------------22
肆、結果與討論-----------------------------------------------------------------23
伍、結論---------------------------------------------------------------------------53
陸、引用文獻---------------------------------------------------------------------55
dc.language.isozh-TW
dc.subject枝葉包zh_TW
dc.subject分離真菌zh_TW
dc.subject台灣二葉松zh_TW
dc.subjectisolated fungien
dc.subjectlitter bagen
dc.subjectPinus taiwanensisen
dc.title梨山台灣二葉松地面松針分解及其內部真菌之研究zh_TW
dc.titleLitter Decomposition and Fungal Analysis within the Needles of Pinus Taiwanensis in Li-Shan Areaen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee汪淮,林世宗,林國銓,蕭英倫
dc.subject.keyword台灣二葉松,枝葉包,分離真菌,zh_TW
dc.subject.keywordPinus taiwanensis,litter bag,isolated fungi,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
3.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved