Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35416
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉麗飛(Li- Fei Liu)
dc.contributor.authorYa-Fin Linen
dc.contributor.author林雅芬zh_TW
dc.date.accessioned2021-06-13T06:51:52Z-
dc.date.available2007-07-30
dc.date.copyright2005-07-30
dc.date.issued2005
dc.date.submitted2005-07-28
dc.identifier.citation曾東海、鄭清煥、陳治官、顏信沐、鄭統隆、卓緯玄和王強生 (2003) 水稻臺農67號同源突變系對褐飛蝨之抗性探討。中華農藝學會九十二年會作物科學講座暨研究成果發表會。中華農藝學會。第30頁。
劉昌郎 (2003) 水稻內外穎退化突變體相關農藝性狀及基因表現之研究。台灣大學農藝系碩士論文。
戶刘義次 (1963) 作物試驗法。東京農事技學會。第159-176頁。
Angenent, G. C., Franken, J., Busscher, M., Weiss, D., and van Tunen, A. J. (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5:33-44.
Angenent, G. C., Franken, J., Busscher, M., van Dijken, A., van Went, J. L., Dons, H. J. M., and van Tunen, A. J. (1995) A novel class of MADS box genes is involved in ovule development in Petunia. Plant Cell 7:1569~1582.
Bäumlein, H., Nagy, I., Villarroel, R., InzeÂ, D., and Wobus, U. (1992) Cis-analysis of a seed protein gene promoter:the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene. Plant Journal 2:233-239.
Benfey, P.N., and Chua, N.H. (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959-966.
Berglund, J. A., Abovich, N., and Rosbash, M. (1998) The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Genes Dev. 12:858–867.
Bhattacharya, S., Bunick, C. G., and Chazin, W. J. (2004) Target selectivity in EF-hand calcium binding proteins. Biochem. et Biophys. Acta 1742:69-79.
Brady, S. T. (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73-75.
Brady, S.T. (1995) A kinesin medley:biochemical and functional heterogeneity. Trends Cell Biol. 5:159-164.
Branco, A. T., Bernabe, R. B., Ferreira, B.S., de Oliveira, M. V. V., Garcia, A. B., and de Souza Filho, G. A. (2004) Expression and purification of the recombinant SALT lectin from rice (Oryza sativa L.). Protein Expression Purification 33:34-38.
Buchner, P., and Boutin, J. P. (1998) A MADS box transcription factor of the AP1/AGL9 subfamily is also expressed in the seed coat of pea (Pisum sativum) during development. Plant Mol. Biol. 38:1253–1255.
Burk, D. H., Liu, B., Zhong, R., Morrison, W. H., and Ye, Z. H. (2001) A Katanin-like protein regulates normal cell wall biosynthesis and cell elongation. The Plant Cell 13:807-827.
Bustin, S. A. (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problem. Journal of Mol. Endocrin 29:23-39.
Caplan, A. J., Cyr, D. M. and Douglas, M. G. (1993) Eukaryotic homologues of Escherichia coli DnaJ:a diverse protein family that functions with HSP70 proteins. Mol. Biol. Cell 4:555-563.
Carafoli, E. and Klee, C. (1999) Calcium as a Cellular Regulator, Oxford University Press, New York, Oxford. 295–310.
Celio, M. R. (1996) Guidebook to the Calcium-Binding Proteins, Oxford University Press, New York.
Changhui, G., Elizabeth, S. R., Kanokporn, B., Kenneth, L. P., and Patrick H. M. (2003) The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM Pathway1. Plant Physiol. 133:100-112.
Choi, H., Hong, J., Ha, J., and Kang, J., Kim, S.Y. (2000) ABFs, a family of ABA-responsive element binding factors. Journal of Biol Chem. 275:1723-1730.
Chomczynski, P. and Sacci, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156 -159.
Christopher, J. W., Sujata, L. R., Charles, M. R., and Jo A. W. (2005) Analysis of mutant phenotypes and splicing defects demonstrates functional collaboration between the large and small subunits of the essential splicing factor U2AFin vivo. Mol. Bio. Cell 16:584-596.
Christensen, A. H., and Quail, P. H. (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213-218.
Claes, B., Dekeyser, R., Villarroel, R., Van den Bulcke, M., Bauw, G., Van Montagu, M., and Caplan, A. (1990) Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2:19–27.
Coen, E. S., and Meyerowitz, E. M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.
Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H. J. M., Angenent ,G .C., and van Tunen, A. J. (1995) The Petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859-1868.
Comer, F. I., and Hart, G. W. (2000) O-Glycosylation of nuclear and cytosolic protein. Journal of Biol. Chemi. 275:29179-29182.
Davies, R. C., Calvio, C., Bratt, E., Larsson, S. H., Lamond, A. I., and Hastie, N. D. (1998) WT1 interacts with the splicing factor U2AF65 in an isoformdependent manner and can be incorporated into spliceosomes. Genes Dev. 12:3217–3225.
Dickinson, C. D., Evans, R. P., and Nielsen, N. C. (1988) RY repeats are conserved in the 5’-flanking regions of legume seed protein genes. Nucleic Acids Res. 16:371.
Domon, C., Lorkovic, Z. J., Valcarcel, J., and Filipowicz, W. (1998) Multiple forms of the U2 small nuclear ribonucleoprotein auxiliary factor U2AF subunits expressed in higher plants. Journal of Biol. Chemi. 273:34603-34610.
Donato, R. (2001) S100:a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 33:637–668.
Eisel, D., Hloch, P., Höfner, P., Keesey, J., Kruchen, B., and Rüger, B. (2000) Dig application Manual for filter hybridization. Roche Mol. Biotech.
Eldik, L. V., and Eldik, D. M. (1998) Watterson, Calmodulin and Signal Transduction. Academic Press.
Ezcurra, I., Ellerstrom, M., Wycliffe, P., Stalberg, K., and Rask, L. (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol. Biol. 40:699-709.
Ferrario, S., Immink, R. G. H., and Angenent, G. C. (2004) Conversation and diversity in flower land. Curr. Opin. Plant Biol. 7:84-91.
Filardo, F.F., and Swain, S.M. (2003) SPYing on GA signaling and plant development. J. Plant Growth Regul. 22:163–175.
Flanagan, C. A., Hu, Y., and Ma, H. (1996) Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J. 10:343–353.
Fornara, F., Marziani, G., Mizzi, L., Kater, M., and Colombo, L., (2003) MADS-box genes controlling flower development in rice. Plant Biol. 5:16-22.
Foster, R., Izawa, T., and Chua, N.H. (1994) Plant bZIP Proteins gather at ACGT elements. FASEB Journal 8:192-200.
Futsuhara, Y., Kondo, S., and Kitano, H. (1979) Genetical studies on dense and lax panicles in rice. II. Character expression and mode of inheritance of dense panicle rice. Jpn. J. Breed. 29:239-247.
Gamboa, A., Paez, V. J., Acevedo, G. F., Vazquez, M. L., and Alvarez, B. R. E. (2001) Floral transcription factor AGAMOUS interacts in vitro with a leucine-rich repeat and an acid phosphatase protein complex. Biochem. Biophys. Res. Commun. 288:1018-1026.
Garcia, A.B., Engler, J. A., de Claes, B., Villarroel, R., Van Montagu, M., Gerats, T., and Caplan, A. (1998) The expression of the salt-responsive gene SALT from rice is regulated by hormonal and developmental cues. Planta 207:172-180.
Greco, R., Stagi, L., Colombo, L., Angenent, G. C., Sari, G. M., and Pe, M. E. (1997) MADS box genes expressed in developing inflorescences of rice and sorghum. Mol. Gen. Genet. 253:615-623.
Guan, C., Rosen, E. S., Boonsirichai, K., Roff, K. L., and Masson, P. H. (2003) The AGR1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Plant Physiol. 133:100-112.
Haughn, G. W., and Somerville, C. R. Genetic control of morphogenesis in Arabidopsis. (1988) Dev. Genet. 9:73-89.
Heard, J., and Dunn, K. (1995) Symbiotic induction of a MADS-box gene during development of alfalfa root nodules. Proc. Natl. Acad .Sci. USA 92:5273–5277.
Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., Coupland, G. (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO Journal 21:4327-4337.
Hirano, K., Teraoka, T., Yamanaka, H., Harashima, A., Kunisaki, A., Takahashi, H., and Hosokawa, D. (2000) Novel mannose-binding rice lectin composed of some isolectins and its relation to a stressinducible SALT gene. Plant Cell Physiol 41:258–267.
Hiei, Y., Ohta, S., and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant Journal 6:271-282.
Hong, C. Y. (1997) Expression of ABA response complex from barley HAV22 gene in transgenic rice. Master thesis graduate institute of Agronomy National Taiwan University.
Ikeda, K., Sunohara, H., and Nagato, Y. (2004) Developmental course of inflorescence and spikelet in rice. Breed. Sci. 54:147-156.
Itoh, J. I., Hasegawa, A., Kitano, H., and Nagato, Y. (1998) A recessive heterochronic mutation, plastochron 1, shortens the plastochron and elongates the vegetative phase in rice. Plant Cell 10:1511-1521.
Itoh, J. I., Nonomura, K. I., Ikeda, K., Yamaki, S., Inukai, Y., Yamagishi, H., Kitano, H., and Nagato, Y. (2005) Rice plant development:from zygote to spikelet. Plant Cell Physiol. 46:23-47.
Iwata, N. and Omura, T. (1971a) Linkage analysis by reciprocal translocation in rice plants (Oryza sativa L.). II. Linkage groups corresponding to the chromosomes 5, 6, 8, 9, 10 and 11. Sci. Bull. Fac. Agr. Kyushu Univ. 25:137-153.
Iwata, N. and Omura, T. (1971b) Linkage analysis by reciprocal translocation method in rice plants (Oryza sativa L.). I. Linkage groups corresponding to the chromosomes 1, 2, 3 and 4. Jpn. J. Breed. 21:19-28.
Iwata, N., Satoh, H., and Omura, T. (1983) Linkage studies in rice. On some marker genes locating on chromosome 12. Jpn. J. Breed. 33:114-115.
Jacobsen, S. E., and Olszewski, N. E. (1993) Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. The Plant Cell 5:887-896.
Jacobsen, S. E., Binkowski, K. A., and Olsxewski, N. E. (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin singnal transduction in Arabisopsis. Proc. Natl. Acad. Sci. USA 93: 9292-9296.
Jang, S., Lee, B., Kim, C., Kim, S. J., Yim, J., Han, J. J., Lee, S., Kim, S. R.,and An G. (2003) The OsFOR1 gene encodes a polygalacturonase-inhibiting protein(PGIP) that regulates floral organ number in rice. Plant Mol. Biol. 53:357-369.
Jeon, J. S., Lee, S., Jung, K. H., Jun, S. H., Kim, C. H., and An, G. (2000) Tissue-preferential expression of a rice α-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol. 123:1005-1014.
Joen, J. S., Jang, S., Lee, S., Nam, J., Kim, C., Lee, S. H., Chung, Y. Y., Kim, S. R., Lee, Y. H., Cho, Y. G., and An, G. (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. The Plant Cell 12:871-884.
John, C. S., Rujin, C., and Patrick, H. M. (1999) ARG1 (Altered Response to Gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc. Natl. Acad. Sci. USA 96:1140-1145.
Jones, J. W. (1952) Inheritance of natural and induced mutations in Caloro rice and observations on sterile Caloro types. J. Hered. 43:81-85.
Kagaya, Y., Ohmiya, K., and Hattori, T.(1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 27:470-478 .
Kanaar, R., Roche, S. E., Beall, E. L., Green, M. R., and Rio, D. C. (1993) The conserved pre-mRNA splicing factor U2AF from Drosophila: requirement for viability. Science 262:569–573.
Kawasaki, H., Nakayama, S., and Kretsinger, R. H. (1998) Classification and evolution of EF-hand proteins. BioMetals 11:277-295.
Khush, G. S., and Librojo, A. L. (1985) Naked seed rice (NSR) is allelic to op and lhs. Rice Genet. News. 2:71.
Kielkopf, C. L., Rodionova, N. A., Green, M. R., and Burley, S. K. (2001) A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell 106:595–605.
Kielkopf, C. L., Lucke, S., and Green, M. R. (2004) U2AF homology motifs: protein recognition in the RRM world. Genes Dev. 18:1513–1526.
Kim, S. T., Cho, K. S., Yu, S., Kim, S. G., Hong, J. C., Han, C., Bae, D. W., Nam, M. H., and Kang, K. Y. (2003) Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3:2368–2378.
Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Koo, S. C., Cho, M. J., and Kang, K. Y. (2004) Expression of a salt-induced protein (SALT) in suspension-cultured cells and leaves of rice following exposure to fungal elicitor and phytohormones. Plant Cell Report 23:256–262.
Kimura, Y., Yahara, I., and Lindquist, S. L. (1995) Role of protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science 268:1362-1365.
Kretsinger, R. H. and Nockolds, C. E. (1973) Carp muscle calcium-binding protein: II. Structure determination and general description. J. Biol. Chem. 248:3313– 3326.
Komatsu, M., Maekawa, M., Shimamoto, K., and Kyozuka, J. (2001) LAX1 and FRIZZY PANICLE 2 genes determines inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev. Biol. 231:354-373.
Komatsu, M., Chujo, A., Nagato, Y., Shimamoto, K., and Kyozuka, J. (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841-3850.
Kutschera, U., and Kende, H. (1988) The biophysical basis of elongation growth in internodes of deepwater rice. Plant Physiol. 88:361-366.
Kyozuka, J., Kobayashi, T., Morita, M., and Shimamoto, K. (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol. 41:710-716.
Linse, S., and Forsen, S. (1995) Determinants that govern high-affinity calcium binding. Adv. Second Messenger Phosphoprot. Res. 30:89-151.
Lopez, D. Z. P., Wittich, P., Pe, M. E., Rigola, D., Buono, I. D., Gorla, M. S., Kater, M. M., and Colombo, L. (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev. Genet. 25:237-244.
Luo, Q., Zhou, K., Zhao, X., Zeng, Q., Xia, H., Zhai, W., Xu, J., Wu, X., Yang, H., and Zhu, L. (2005) Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta 221:222-230.
Mandel, M. A., Lutziger, I., and Kuhlemeier, C. (1994) A ubiquitously expressed MADS-box gene from Nicotiana tabacum. Plant. Mol. Biol. 25:319-321.
Marcotte, J. W. R., Russell, S. H., and Quatrano, R. S. (1989) Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1:969-976.
Matsushima, S., and Manaka, T. (1956) Developmental process of young panicle and its diagnosis in rice plants, developmental process of young panicle in all stems, its standard and characteristics of each developmental stages. Assoc. Agric. Technol., Tokyo. 1-58.
Misro, B. (1981) Linkage studies in rice (Oryza sativa L.). X. Identification of linkage groups in indica rice. Oryza, Cuttack 18:185-195.
Mizukami, Y., Huang, H., Tudor, M., Hu, Y., and Ma, H. (1996) Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 8:831–845.
Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N., Tyagi, A.K. (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the coda gene are highly tolerant to salt stress. Ther. App1. Genet. 106:51-57.
Moons, A., Prinsen, E., Bauw, G., and Van Montagu, M. (1997) Antagonistic effects of abscisic acid and jasmonates on SALT stressinducible transcripts in rice roots. Plant Cell 9:2243–2259.
Moon, Y. H., Kang, H. G., Jung, J. Y., Jeon, J. S., Sung, S. K., and An, G. (1999) Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a Yeast Two-Hybrid system. Plant physiol. 120:1193-1203.
Mossner, E., Boll, M., and Pfleiderer, G. (1980) Hoppe Seyler’s Z. Physiol. Chem. 361:543-549.
Mundy, J., Yamaguchi, S. K., and Chua, N. H. (1990) Nuclear proteins bind conserved elements of the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA 87:1406-1410.
Nagao, S. and Takahashi, M. (1963) Trial construction of twelve linkage groups in Japanese rice. Genetical studies on rice plant. XXVII. J. Fac. Agr. Hokkaido Univ. 53:72-130.
Nagasawa, N., Miyoshi, M., Kitano, H., Satoh, H., and Nagato, Y. (1996) Mutations associated with floral organ number in rice. Planta 198:627-633.
Nagasawa, N., Miyoshi, M., Sano, Y., Satoh, H., Hirano, H., Sakai, H., and Nagato, Y. (2003) SUPERWOMAN 1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705-718.
Nelson, M. R. and Chazin, W. J. (1998) Structures of EF-hand Ca2+-binding proteins:diversity in the organization, packing and response to Ca2+ binding. BioMetals 11:297-318.
Ng, M., and Yanofsky, M.F. (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186-195.
Nonomura, K. I., Miyoshi ,K., Eiguchi, M., Suzuki, T., Miyao, A., Hirochika, H., and Kurata, N. (2003) The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation rice. Plant Cell 15:1728-1739.
Page, M. C. P., Amonlirdviman, K., and Sharp, P. (1999) PUF60, a novel U2AF65-related splicing activity. RNA 5:1548-1560.
Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E., and Yanofsky, M. F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203.
Perry, S. E., Nichols, K. W., and Fernandez, D. E. (1996) The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. Plant Cell 8:1977-1989.
Pnueli, L., Hareven, D., Broday, L., Hurwitz, C., and Lifschitz, E. (1994) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6:175-186.
Potashkin, J., Naik, K., and Wentz, H. K. (1993) U2AF homolog required for splicing in vivo. Science 262:573-575.
Prasad, K., Sriram, P., Kumar, C. S., Kushalappa, K., and Vijayraghavan, U. (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev. Genes Evol. 211:281-290.
Purugganan, M. D., Rounsley, S. D., Schmidt, R. J., and Yanofsky, M. F. (1995) Molecular evolution of flower development: Diversification of the plant MADS-box regulatory gene family. Genetics 140:345-356.
Radonic, A., and Thulke, S. (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun 313:856-862.
Raskin, I., and Kende, H. (1984) Role of gibberellin in the growth response of submerged deep water rice. Plant Physiol. 76:947-950.
Riechmann, J. L., Krizek, B. A., and Meyerowitz, E. M. (1996a) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93:4793-4798.
Riechmann, J. L., Wang, M., and Meyerowitz, E. M. (1996b) DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res. 24:3134-3141.
Rieping, M. and Schoffl, F.R.T. (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol. Gen. Genet. 231:226-232.
Rudner, D., Kanaar, K., Breger, S., and Rio, D. (1996) Mutations in the small subunit of the Drosophila U2AF splicing factor cause lethality and developmental defects. Proc. Natl. Acad. Sci. USA 93:10333-10337.
Rudner, D., Breger, K., Kanaar, R., Adams, M., and Rio, D. (1998a) RNA binding activity of heterodimeric splicing factor U2AF:at least one RS domain is required for high-affinity binding. Mol. Cell. Biol. 18:4004-4011.
Rudner, D. Z., Breger, K. S., and Rio, D. (1998b) Molecular genetic analysis of the heterodimeric splicing factor U2AF: the RS domain on either the large or small Drosophila subunit is dispensable in vivo. Genes Dev. 12:1010-1021.
Ruskin, B., Zamore, P. D., and Green, M. R. (1988) A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 52:207-219.
Sanger, F., Nicklen, S., and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning:A Laboratory Manual, (2nd ed.) Cold Spring Habor:Cold Spring Habor Laboratory Press. 5.72.
Schneitz, K. (1999) The molecular and genetic control of ovule development. Curr. Opin. Plant Biol. 2:13-17.
Schwarz, S. Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931-936.
Shen, Q., Zhang, P., Ho, T. H. D. (1996) Molecular nature of abscisic acid (ABA) response complexes:composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107-1119.
Shepard, K. A., and Purugganan, M. D. (2002) The genetics of plant morphological evolution. Curr. Opin. Plant Biol. 5:49-55.
Sheu, J. J., Yu, T. S., Tong, W. F., and Yu, S. M. (1996) Carbohydrate starvation stimulates differential expression of rice alpha-amylase genes that is modulated through complicated transcriptional and posttranscriptional processes. J. Biol. Chem. 271: 26998-7004.
Shirsat, A., Wilford, N., Croy, R., and Boulter, D.(1989) Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol. Gen. Genet. 215:326-331.
Silverstone, A. L., Mak, P. Y. A., Martinez, E. S., and Sun, T. P. (1997) The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146:1087-1099.
Smith, N. A., Singh, S. P., Wang, M.B., Stoutjesdijk, P. A., Green, A. G., and Waterhouse, P. M. (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319∼320.
Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503-517.
Souza, F. G. A., de Ferreira, B.S., Dias, J. M., Queiroz, K. S., Branco, A. T., Bressan, S. R. E., Oliveira, J. G., and Garcia, A. B. (2003) Accumulation of SALT protein in rice plants as a response to environmental stresses. Plant Sci 164:623–628.
Steinmayr, M., Motte, P., Sommer, H., Saedler, H., and Schwarz, S. Z. (1994) FIL2, an extracellular leucine-rich repeat protein, is specifically expressed in Antirrhinum flowers. Plant J. 5:459-467.
Sutoh, K. and Yamauchi, D. (2003) Two cis-acting elements necessary and sufficient for gibberellin-upregulated proteinase expression in rice seeds. Plant Journal 34:636-645.
Swain, S. M., Tseng, T., and Olszewski, N. E. (2001) Altered expression of SPINDLY affects gibberellin response and plant development. Plant Physiol. 126: 1174-1185.
Swain, S. M., Tseng, T., Thornton, T. M., Gopalrsj, M., and Olszewski, N. E. (2002) SPINDLY is a nuclear-localized repressor of gibberellin signal transduction expressed throughout the plant. Plant Physiology 129:605-615.
Sylvia, de P. B., and Schilperoort, R. A. (1992) Structure and expression of a root-specific rice gene. Plant Mol. Biol. 18:161-164.
Tabor, S. and Struhl, K. (1989) In DNA-Dependent DNA Polymerases. Current Protocols in Molecular Biology 3.5.10-12.
Takahashi, M., Nagasawa, N., Kitano, H., and Nagato, Y. (1998) panicle phytomer 1 mutations affect the panicle architecture of rice. Theor. Appl. Genet. 96:1050-1056.
Takeoka, Y., Mamun, A.A., Wada, T., Kaufman, P.B. (1992) Reproductive adaptation of rice to environmental stress. Elsevier, Tokyo. 33-108.
Tamura, K., Nakatani, K., Mitsui, H., Ohashi ,Y., and Takahashi, H. (1999) Chara cterization of katD, a kinesin-like protein gene specifically expressed in floral tissues of Arabidopsis thaliana. Gene 230:23-32.
Tang, W. and Perry, S.E. (2003) Binding site selection for the plant MADS domain protein AGL15:an in vitro and in vivo study. Journal Biol. Chem. 278:28154-28159.
Terzaghi, W.B. and Cashmore, A.R. (1995) Light-regulated transcription. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:445-474.
Theissen, G., Becker, A., Rosa, A. D., Kanno, A., Kim, J. T., Münster, T., Winter, K. U., and Saedler, H. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42:115-149.
Theissen, G. (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4:75-85.
Theissen, G., and Saedler, H. (2001) Floral quartets. Nature 409:469-471.
Toki, S. (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol. Biol. Rep. 15:16-21.
Toyofuku, K., Umemura, T., and Yamaguchi, J. (1998) Promoter elements required for sugar-repression of the RAmy3D gene for alpha-amylase in rice. FEBS Lett 428:275-280.
Tseng, T., Swain, S. M., and Olszewski, N. E. (2001) Ectopic expression of the tetratricopeptide repeat domain of SPINDLY causes defects in gibberellin response. Plant Physiol. 126:1174-1185.
Urao, T., Yamaguchi, S.K., Urao, S., and Shinozaki, K. (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529-1539.
Vagner, S., Vagner, C., and Mattaj, I. W. (2000) The carboxyl terminus of vertebrate poly(A) polymerase interacts with U2AF65 to couple 3’end processing and splicing. Genes Dev. 14:403-413.
Valcarcel, J., Gaur, R. K., Singh, R., and Green, M. R. (1996) Interaction of U2AF65 RS region with pre-mRNA branch point and promotion of base pairing with U2 snRNA. Science 273:1706-1709.
Vilardell, J., Mundy, J., Stilling, B., Leroux, B., Pla M., Freyssinet, G., and PageÁ, sM. (1991) Regulation of the maize rab17 gene promoter in transgenic heterologous systems. Plant Mol. Biol. 17:985-993.
Von, H. G. (1986) A method for predicting signal sequence cleavage site. Nucleic Acids Res 11:4683-4690.
Wainberg, Y. G., Maymon, L., Borochov, R., Alvarez, J., Olszewski, N., Ori, N., Eshed, Y., and Weissa, D. (2005) Cross talk between Gibberellin and Cytokinin: The Arabidopsis GA response inhibitor SPINDLY Plays a positive pole in Cytokinin signaling. The Plant Cell 17:92-102.
Wentz, H. K., and Potashkin, J. (1996) The small subunit of the splicing factor U2AF is conserved in fission yeast. Nucleic Acids Res. 24:1849-1854.
Wilson, R. N., and Somerville, C. R. (1995) Phenotypic suppression of the gibberellin-insensitive mutant (gai) of Arabidopsis. Plant Physiol. 108:495-502.
Wu, S., Romfo, C., Nilsen, T., and Green, M. (1999) Functional recognition of the 3’splice site AG by the splicing factor U2AF35. Nature 402:832-835.
Yamaguchi, T., Nagasawa, N., Kawasak, S., Matsuoka, M., Nagato, Y., and Hirano, H. Y. (2004) The YABBY Gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500-509.
Zamore, P. D., and Green, M. R. (1989) Identification, purification, and biochemical characterization of U2 small nuclear ribonucleoprotein auxiliary factor. Proc. Natl. Acad. Sci. USA 86:9243–9247.
Zamore, P., Patton, J., and Green, M. (1992).Cloning and domain structure of the mammalian splicing factor U2AF. Nature 355:609–614.
Zhang, W. J., and Wu, J. Y. (1998) Sip1, a novel RS domain-containing protein essential for pre-mRNA splicing. Mol. Cell. Biol. 18:676-684.
Zhang, H., and Forde, B. G. (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407-409.
Zhang, W., Peumans, W. J., Barre, A., Astoul, C. H., Rovira, P., Rouge, P., Proost, P., Truffa-Bachi, P., Jalali, A. A., and Van Damme, E. J. (2000) Isolation and characterization of a jacalin-related mannose binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210:970-978.
Zhong, R., Burk, D. H., Morrison, W. H., and Ye, Z. H. (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell strength. The Plant Cell 14:3101-3117.
Zhuang, Y., and Weiner, A. M. (1986) A compensatory base change in U1 snRNA suppresses a 5’ splice site mutation. Cell 46:827-835.
Zorio, D. A., Lea, K., and Blumenthal, T. (1997) Cloning of Caenorhabditis U2AF65: an alternatively spliced RNA containing a novel exon. Mol. Cell. Biol. 17:946–953.
Zorio, D.A., and Blumenthal, T. (1999a) U2AF35 is encoded by an essential gene clustered in an operon with RRM/cyclophilin in Caenorhabditis elegans. RNA 5:487–494.
Zorio, D., and Blumenthal, T. (1999b) Both subunits of U2AF recognize the 3’ splice site in Caenorhabditis elegans. Nature 402:835-838.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35416-
dc.description.abstract水稻穎花大小與形態可能限制榖粒發育,間接影響產量;因此,本試驗期望找到與水稻穎花發育相關的基因。從劉(2003)所建立水稻穎花發育相關候選基因庫中,挑選6個基因:salT基因(salt-induced protein)、GA-SPY基因(gibberellin action negative regulator SPY-related protein)、U2AF基因(U2 snRNP auxiliary factor,small subunit-related protein)、kinesin-like基因、DnaJ-like基因、及EF hand基因,以水稻正常型穎花(SLP/SLP)、小穎花突變體(SLP/slp)及內外穎退化突變體(slp/slp)之葉片及1~4公分幼花序為材料,利用Real-Time RT-PCR分析,發現salT基因在突變體幼花序中大量表現。因此,進一步分析salT基因在水稻不同器官中的表現,發現salT基因在水稻中僅有一個拷貝數,葉鞘salT基因表現量比葉身高,在SLP/SLP幼花序中幾乎不表現,但在slp/slp幼花序中表現量極高。salT基因在水稻中僅有一個拷貝數;本試驗進一步利用農桿菌轉殖法將salT基因轉殖到TNG67及SLP/SLP品系中,分析salT基因對轉殖株穎花形態之影響。在外表性狀上,持續性表現salT基因之TNG67轉殖株,會使株高變矮,且均不結實,類似slp/slp形態;然而,在促進或抑制salT基因表現之SLP/SLP轉殖系中,植株株高及穎花形態均與非轉殖株無太大差異;因此,水稻穎花構造之變異與salT基因的關係,尚須進一步確認。在非生物逆境研究方面,誘導表現salT基因可能與水稻3-4葉齡幼苗的耐旱性有關,在耐鹽性與耐冷性方面未見特殊影響,須再經試驗確認。zh_TW
dc.description.abstractThe size and shape of lemma and palea may limit the developing of rice grains, that could affect the rice yield indirectly. Therefore it is interesting to clone genes related to lemma and palea. In this thesis, six genes from the lemma/palea related gene pool which is established by Liu (2003) were further studied. Those genes are salT gene (salt-induced protein), GA-SPY gene (gibberellin action negative regulator SPY-related protein), U2AF gene (U2 snRNP auxiliary factor, small subunit-related protein), kinesin-like gene, DnaJ-like gene, and EF hand gene. At first, the gene expression in leaves and 1~4 cm inflorescences of normal lemma/palea (SLP/SLP), smaller lemma/palea (SLP/slp), and stunted lemma/palea (slp/slp) was compared by Real Time RT-PCR. The results showed that salT expression is higher in leaf sheath than in leaf lamina, and is especially high in the inflorescence of slp/slp mutant. The Southern blot showed that only one copy of salT gene in rice genome. SalT gene was transferred to TNG67 and SLP/SLP rice plant by Agro-transformation method. Three kinds of constructs were designed for over expression, induced expression, and knock out expression of salT gene. The transgenic rice plants with over expressed of salT gene in TNG67 were lower and no spikelets. However, the plant height and the size of lemma/palea of SLP/SLP transgenic rice plants showed no difference to the non-transgenic rice plants. Therefore, the relationship between salT and the structure of spikelets must be studied in more details. The transgenic rice plants with over expressed salT gene showed higher drought tolerance, but no special performance under salt or cold stress.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:51:52Z (GMT). No. of bitstreams: 1
ntu-94-R92621111-1.pdf: 2005638 bytes, checksum: ad5a10782e95e162760b619d43c980d3 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄-------------------------------------------------------------------------------------------------i
圖表目錄--------------------------------------------------------------------------------------ii
附錄目錄-------------------------------------------------------------------------------------iii
縮寫對照表--------------------------------------------------------------------------------------iv
中文摘要------------------------------------------------------------------------------------------v
英文摘要-----------------------------------------------------------------------------------------vi
壹、前言------------------------------------------------------------------------------------------1
貳、文獻回顧
Ⅰ.水稻穎花發育之研究-----------------------------------------------------------------3
Ⅱ.SLP/slp小穎花突變體之研究------------------------------------------------------7
Ⅲ.水稻穎花發育候選基因之探討-----------------------------------------------------9
參、實驗設計與流程--------------------------------------------------------------------------15
肆、材料與方法
Ⅰ.試驗材料-------------------------------------------------------------------------------16
Ⅱ.水稻穎花相關基因表現分析-------------------------------------------------------17
Ⅲ. 水稻內生salT基因拷貝數--------------------------------------------------------19
Ⅳ. 基因轉殖質體製備------------------------------------------------------------------24
Ⅴ. 水稻基因轉殖------------------------------------------------------------------------33
Ⅵ. 轉殖水稻T1代耐逆境測試--------------------------------------------------------41
伍、結果
Ⅰ. 水稻穎花相關基因表現分析------------------------------------------------------44
Ⅱ. 水稻內生salT基因表現特性分析-----------------------------------------------45
Ⅲ. salT基因轉殖水稻之分析---------------------------------------------------------47
Ⅳ. salT轉殖水稻農藝性狀調查------------------------------------------------------49
Ⅴ. salT轉殖水稻T1代分離率調查--------------------------------------------------50
Ⅵ. salT轉殖水稻對非生物性逆境之反應------------------------------------------50
陸、討論-----------------------------------------------------------------------------------------52
參考文獻-----------------------------------------------------------------------------------------59
圖表-----------------------------------------------------------------------------------------------70
附錄----------------------------------------------------------------------------------------------114
dc.language.isozh-TW
dc.subjectsalT基因zh_TW
dc.subject水稻轉殖zh_TW
dc.subject水稻穎花zh_TW
dc.subjectrice inflorescenceen
dc.subjectsalT geneen
dc.subjecttransgenic riceen
dc.title水稻穎花相關基因之研究zh_TW
dc.titleStudies on the Genes Related to Rice Spikeletsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張孟基(Men-Chi Chang),黃鵬林(Pung-Ling Huang),王強生(Chang-Sheng Wang)
dc.subject.keyword水稻穎花,水稻轉殖,salT基因,zh_TW
dc.subject.keywordrice inflorescence,transgenic rice,salT gene,en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved