Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35370
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀男
dc.contributor.authorYu-Hsuan Chanen
dc.contributor.author詹于萱zh_TW
dc.date.accessioned2021-06-13T06:49:56Z-
dc.date.available2005-12-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-28
dc.identifier.citation王永凱,人工真皮基質之傷口癒合研究。國立成功大學生物科技研
究所碩士論文,2002。
亦岩江里子,日本藥學會第111年會講演要旨集3:16,1991。
吳政翰,β-葡聚多醣體對小白鼠吞噬細胞之吞噬作用和細胞素的影
響。國立台灣大學動物學研究所碩士論文,2004。
范如霖,臨床皮膚科學。合記圖書出版社 : 1-25,1973。
范如霖,黃文峰,曹光磊,皮膚組織病理學。合記圖書出版社 : 1- 26,1972。
林欣穎,裂褶菌多醣體的濃度分析及對小白鼠之抗氧化活性測試。
國立台灣大學動物學研究所碩士論文,2001。
倪孝強,PU-水膠複合材料應用於人工皮膚的製備及性質研究。國立
中興大學化學工程學系碩士論文,2003。
陳秀男,林欣穎,賀駿業,鍾慶璋,陳士均,全方位菇蕈多醣體。
上弘茂生物科技股份有限公司 : 116,2004。
張東杰,鍾啟禮,劉忠政,容世明,華筱玲,褚柏顯,林玉玲,吳
啟城,李隆乾,林主一,吳杰才,邱仲峰,王妙娟,陳孟麟,
組織學圖譜。藝軒出版社:2-22,1992。
張簡志強,應用金屬親和薄膜分離純化盤尼西林醯胺酵素。國立中
興大學化學工程學系碩士論文,2003。
葉碧芳,實用傷口護理。華杏出版有限公司:1-232,1995。
劉技謀,人工真皮之製備與透明質酸添加效應之研究。國立成功大
學生物科技研究所碩士論文,2001。
謝孟通,聚醣類在魚類之非特異性免疫反應機制研究。國立中興大
學獸醫學系碩士論文,1996。

Altmeyaer P, Hoftman K, el Gammal S, Hutchinsion J. Wound
healing and skin physionlogy. Springer :73, 1995.
Ashcroft GS, Horan MA, Ferguson MW, The effects of ageing
on cutaneous wound healing in mammals. J Anat 187:1-
26, 1995.
Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal
transcription factor in chronic inflammatory diseases.
N Engl J Med 336:1066-71, 1997.
Basilico C, Moscatelli D. The FGF family of growth factors
and oncogenesis. Adv Cancer Res 59:115-65, 1992.
Bolton LL, Johnson CL, Rijswijk LV. Occlusive dressings:
therapeutic agent and effects on drug delivery.
Clinics Dermatol 9:573-583, 1992.
Browder W, Williams D, Rakinic J, Dale M, Diluzio NR.
Modification of post-operative C. albicans sepsis by
glucan Immunostimulation. Int J Immunopharmac 6:19-26,
1983.
Brown GD, Gordon S. A new receptor for β-glucans. Nature
413:36-7, 2001.
Cameron DH. Howard M. Effect of air exposure and occlusion
on exper-imental human skin wounds. Nature 200: 377-
378, 1963.
Chen JT, Hasumi K. Activation of peritoneal macrophage in
patients with gynecological malignancies by sizofiran
and recombinant interferon-gamma. Biother 3(6):189-
194, 1993.
Cheung PCK. Functional properties of edible mushrooms. J
Nutrition 128:1512-1516, 1998.
Clark RAF, Folkvord JM, Hart CE, Murray MJ, McPherson JM.
Platelet isoforms of platelet-derived growth factor
stimulate fibroblasts to contract collagen matrices.
J Clin Invest 84:1036-1040, 1989.
Cote F, Hahn MG. Oligosaccharins-structures and signal-
transduction. Plant Mol Biol 26(5): 1379-1411, 1994.
Czop JK, Valiante NM, Janusz MJ. Phagocytosis of
particulate activators of the human alternative
complement pathway through monocyte beta-glucan
receptors. Prog Clin Biol Res 297:287-296, 1989.
Delatte SJ, Evans J, Hebra A, Adamson W, Othersen HB,
Tagge EP. Effectiveness of beta-glucan collagen for
treatment of partial-thickness burns in children. J
Pediatr Surg 36:113-118, 2001.
Diluzio NR. Immunopharmacology of glucan: a broad-spectrum
enhancer of host defense mech/anisms. Trends in
Pharmacol SCI 4:344-34, 1983.
Doita M, Gilles KA, Hamilton JK, Rebers PA, Smith F.
Colorimetric method for determination of sugar and
related substances. Anal Chem 28:350-356, 1956.
Dostal GH, Gamelli RL. Fetal wound healing. Surg Gynecol
Obstet 176(3):299-306, 1993.
Eaglstein WH, Iriondo M, Laszlo K. A composite skin
substitute (graftskin) for surgical wounds. A clinical
experience. Dermatol Surg 21:839-843,1995.
Fujimiya Y, Suzuki Y, Oshiman K, Kobori H, Moriguchi K,
Nakashima H, Matumoto Y, Takahara S, Ebina T, Katakura
R. Selective tumoricidal effect of soluble proteo-
glucan extracted from the basidiomycete, Agaricus
blazei Murill, mediated via natural killer cell
activation and apoptosis. Cancer Immunol Immunother
46:147-159, 1998.
Grasselli M, izoa AnANdC, Camperi SA, Wolman FJ, Smolko
EE, Smolko, O. Cascone Immobilized metal ion affinity
hollow-fiber membranes obtained by the direct grafting
technique Radiat. Phys Chem 55:203-208, 1999.
Gomori G. A rapid one-step trichrome stain. Am J Clin
Pathol 10:661, 1950.
Hay ED. Cell Biology of extracellular matrix. Plenum
press, 1991.
Heldin CH, Westermark B. Role of platelet-derived growth
factor in vivo. Clark Raf 249-73, 1996.
Hung WS, Fang CL, Su CH, Lai WFT, Chang YC, Tsai YH.
Cytotoxicity and immunogenicity of sacchachitin and
its mechanism of action on skin wound healing. J
Biomed Materials Res 56:93-100, 2001.
Hunt TK, Knighton DR, Thakral KK, Goodson WH 3rd, Andrews
WS. Studies on inflammation and wound healing:
angiogenesis and collagen synthesis stimulated in vivo
by resident and activated wound macrophages. Surg
96:48-54, 1984.
Hutchinson JJ, McGuckin M. Occlusive dressing: A
microbiologic and clinical review. Am J Infect control
18:257-268, 1990.
Kirsner RS, Eaglstein WH. The wound healing process.
Dermatolo Clin 11,629-640, 1993.
Kougias P, Wei D, Rice PJ, Ensley HE, Kalbfleisch J,
Willams DL, Browder IW. Normal human fibroblasts
express pattern recognition receptors for fungal (1→
3)-β-D-glucans. Infect Immunity 69:3933-3938, 2001.
Kubota N, Nakagawa Y, Eguchi Y. Recovery of serum proteins
using cellulosic affinity membrane modified by
immobilization of Cu2+ ion. J Appl Polym Sci 62:1153-
1160, 1996.
Kuroyanagi Y. Advances in wound dressings and cultured
skin substitutes. J Artif Organs 2:97-116, 1999.
Lee SB, Jeon HW, Lee YW, Lee YM, Song KW, Park MH, Nam YS,
Ahn HC Bio-artifical skin composed of gelatin and (1→
3),(1→6)-β-glucan. Biomaterials 24:2503-2511, 2003.
Lee DY, Ahn HT, Cho KH. A new skin equivalent model:dermal
substrate that combines de-epidermized dermis with
fibroblast-populated collagen matrix. J Dermatol Sci
23:132-7, 2000.

Leeson CR, Leeson TS, Paparo AA. Textbook of Histology.
5thed:79-135, 1996.
Leibovich SJ, Ross R. The role of the macrophage in wound
repair. A study with hydrocortisone and antimacrophage
serum. Am J Pathol 78:71-100, 1975.
Lilli RD. Further experiments with the Masson trichrome
modification of Mallory's connectivet tissue stain.
Stain Technol 15-17, 1940.
Liu F, Ooi VEC, Chang ST. Free radical scavenging
activities of mushroom polysaccharide extracts. Life
Sci 60:763-771, 1997.
Mignatti P, Rifkin DB, Welgus HG, Parks WC. Proteinases
and tissue remodeling. Clark Raf 427-74, 1996.
Mizuno M, Morimoto M, minato K, Tsuchida H.
Polysaccharides from Agaricus blazei stimulate
lymphocyte T-cell subsets in mice. Biotechnol Biochem
62(3):434-437, 1998.
Mizuno T. Bioactive biomolecules of mushrooms: Food
function and medicinal effect of mushroom fungi. Food
Reviews International 11:7-21, 1995.
Mizuno T, Kato N, Totsuka A, Takenaka K, Shinkai K,
Shimizu M. Fractionation, structural features and
antitumor activity of water-soluble polysaccharide from
“Reishi,”the fruit body of ganoderma lucidum. Nippon
Nogeikugaku Kaishi 58(9): 871-880, 1981.
Montesano R, Orci L. Transforming growth factor β
stimulates collagen-matrix contraction by fibroblasts:
implications for wound healing. Proc Natl Acad Sci USA
85:4894-4897, 1988.
Muta T, Iwanaga S. The role of hemolymph coagulation in
innate immunity. Current Opi Immulog 8(1): 41-47, 1996
Nabeshima K, Inoue T, Shimao Y, Sameshima T. Matrix
metalloproteinases in tumor invasion: Role for cell
migration. Patholo Int 52:25-264, 2002.
Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD,
Wilson CB, Schroeder L, Aderem A. The repertoire for
pattern recognition of pathogens by the innate immune
system is defined by cooperation between toll-like
receptors. Proc Natl Acad Sci 97:13766-71, 2000.
Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG,
Parks WC . The activity of collagenase-I is required
for keratinocyte migration on a type I collagen
matrix. J Cell Biol 137:1445-57, 1997.
Polverini PJ, Cotran PS, Gimbrone MA, Unanue ER. Activated
macrophages induce vascular proliferation. Nature
269:804-806, 1997.
Portera CA, Love EJ. Effect of macrophages stimulation on
collage biosynthesis in the healing wound. Am Surg
63:125-132, 1997.
Rajarathnam S, Shashirekha MN, Bano Z. Biodegradative and
biosynthetic capacities of mushrooms: present and
future strategies. Critical Re Biotechnology 18
(2/3):91-236, 1998.
Ross GD, Cain JA, Myones BL, Newman SL, Lachmann PJ.
Specificity of membrane complement 4:61-74, 1987.
Ross MH, Romrell LJ, Kaye GI. Histology : A Test and
Atlas. 3rd ed. Williams and Wilkins 58-139, 1998.
Rubin E, Farber JL. Pathology. Philadephia J B Lippincott
Co 77-89, 1988.
Schiling JA. Wound healing. Surg Clin North Am 56:859-857,
1976.
Seki N, Muta T, Oda T, Iwaki D, Kuma K, Miyata T, Iwanaga
S. Horseshoes-crab (1,3)-beta-D-glucan-sensitive
cagulation factor-G – a serine-protease zymogen
heterodimer with similarities to beta-glucan-bindind
proteins. J Biol Chem 269 (2): 1370-1374, 1994.
Singer AJ, Clark RAF. Mechanisms of disease: cutaneous
wound healing. N Engl J Med 341:738, 1999.
Soderhall K, Cerenius L. Role of the prophenoloxidase-
activating system in invertebrate immunity. Current
Opi Immulog 10 (1): 23-28, FEB 1998
Su CH, Sun CS, Juan SW, Ho HO, Hu CH, Shen MT. Development
of fungal Mycelia as skin substitutes : effects on
wound healing and fibroblasts. Biomaterials 20:61-68,
1999.
Suzuki I, Hashimoto K, Ohno N, Tanka H, Yadomae T.
Immunomodulation by orally administered β-glucan in
mice. Int J Immunopharmac 11(7):761-769, 1989.
Takeuchi K, Takeshi I, Yuji T, Keiko S, Toshihide T. High
sensitive phenol-sulfuric acid colorimetric method. Res
Bull Obihiro Univ Natur Sci 22:29-33, 2001.
Vallamo M, Weckeroth M, Puolakkainen P, Kere T, Saarinen
P, Lauharanta J, Sarrialho-Kere UK. Patterns of matrix
metalloproteinase and TIMP-1 expression in chronic and
normally healing cutaneous wound. Britsh J Deratology
135:52-59, 1996.
Vu TH, Werb Z. Matrix metalloproteinases: effectors of
development and normal physiology. Gene and Development
14(17):2123-2133, 2000.
Wakshull E, Brunke-Reese D, Lindermuth J, Fisette L,
Nathan RS, Crowley JJ, Tuft JC, Zimmeran J, Mackin W,
Adems DS. PGG-glucan, a soluble beta-(1,3)-glucan,
enhances the oxidative burst response, microbicidal
activity,and activates an NF-kappa-B-like factor in
human PMN: Evidence for a glycosphingolipid beta-(1,3)-
glucan receptor. Immunopharmacology 41:89-107, 1999.
Wall SJ, Sampson MJ, Levell N, Murphy G. Elevated matrix
metalloproteinase-2 and -3 production from human
diabetic dermal fibroblasts. Brit J Dermatolo 149:13-
16, 2003.
Wanda A, Dorset-Martin DVM. Rat model of skin healing: A
Review. Wound Rep Reg 12:591-599, 2004.


Wasser SP. Medicinal mushrooms as a source of antitumor
and immunomodulating polysaccharides. App Microbiol
Biotechnology 60:258-274, 2002.
Wei D, Williams D, Browder W. Normal human fibroblasts
express pattern recognition receptors for fungal(1-3)-b-
D-glucans. Infect Immunity 3993-3938, 2001.
Wei D, Williams D, Browder W. Activation of AP-1 and SP1
correlates with eound growth factor gene expression in
glucan-treated human fibroblasts. Int Immunopharmacology 2:1163-1172, 2002a
Wei D, Zhang L, Williams D, Browder W. Glucan stimulates
human dermal fibroblast collagen biosythesis through a
nuclear factor-1 depenent mechanism . Int
Immunopharmacology 10:161-168, 2002b
Wheeland RG. Wound healing and the newer surgical
dressings. In: Moschella SL, Hurley HJet al., eds.
Dermatology. Phliadelphia: WB Saunders 2305-2311 ,
1992.
Winter GD. Formation of the scab and the rate of
epthelialization of superficial wounds in the skin of
the young domestic pig. Nature 193: 293-294, 1962.
Yager DR, Zhang LY, Liang HX, Diegelmann RF, Cohen IK.
Wound fluid from human pressure ulcers contain
elevated matrix metalloproteinase levels and activity
compared to surgical wound fuids. J invest Dermatol
107:743-748, 1996.
Yamada N, Uchinuma E, Kuroyanagi Y. Clinical evaluation of
an allogeneic cultured dermal substitute composed of
fibroblasts within a spongy collagen matrix. Scand J
Plast Reconstr 33:1-8, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35370-
dc.description.abstract多醣體 (β-Glucan ) 可以活化嗜中性白血球、巨噬細胞、自然殺手細胞等多種免疫細胞,刺激免疫反應的發生以及抵禦細菌的感染。最近的研究中指出多醣體能直接活化人類的纖維母細胞促進膠原蛋白的生成,進而幫助傷口的癒合。為了進一步證明多醣體的效能,本實驗利用菇菌多醣體溶液 ( Mushroonβ-Glucan solution ) 及羥乙基纖維素(Hydroxyethyl Cellulose;HEC)製成菇菌多醣體凝膠,作為傷口敷料使用,以進行大白鼠背部全深度傷口的治療評估。
實驗分成兩部分,第一部份實驗:定期觀察傷口外觀癒合的面積,結果顯示Control組、Glucan組、HEC組及HEC+Glucan組的傷口分別於手術後第29天、第23天、第23天及第19天癒合,在四組處理組中以 HEC+Glucan組的傷口癒合速度的最快速,相較於Control組明顯提早了10天。第二部分實驗:利用肉眼以及組織切片觀察傷口組織的生長情形,發現Glucan組和HEC+Glucan組的傷口部位出現明顯的發炎反應及較多的纖維母細胞,產生較多的膠原蛋白。此外,四組處理組中以HEC+Glucan組的傷口組織生長情況最佳,不僅在表皮細胞的增生和移行、纖維母細胞的聚集、肉芽組織的生長、血管新生等方面效果最為顯著,在傷口癒合後的膠原纖維的排列情況,也最接近正常皮膚組織。因此,本實驗推論菇蕈多醣體凝膠對於傷口癒合確實具有良好的促進效果。
zh_TW
dc.description.abstractβ-Glucan has been reported to be able to induce immune response and antibacterial activities through stimulating of neutrophils, macrophages, nature killer cells, and various immunocytes. Moreover, β-Glucan may improve wound healing of experimental animals through activating fibroblast and consequently enhance collagen biothynthses in the skin. In the present study, wound dressing containing mushroom (1→3)-β-D-glucan or(1→3),(1→6)
-β-D-glucan incorporated with hydroxyethyl cellulose (HEC ), were used for the investigation on the recovery process of skin following full-thickness dorsal skin defect of Wistar rat. The study was evaluated by measurment of recovery wound area after surgery and treatment. The average wound healing time for control, Glucan, HEC and HEC +Glucan were 29 days, 23 days, 23 days and 19 days respectively. It is suggested that Glucan, HEC and HEC +Glucan may significantly decrease the wound healing time in the experiment rats when compared with the control rats. The superior results on wound healing was obtained in the experiment using HEC +Glucan. The results on histopathological observasion showed that when Glucan and HEC +Glucan were used an obvious inflammation and significant fibroblast collagen biothynthesis were observed. Futhermore, the results revealed that HEC +Glucan exhibited the best efficiency on wound healing among the three treatments. Experiment on histolopathological observation comfirmed that HEC+Glucan may enhance to the fibroblast proliferation, keratinocyte proliferation and migration, granulation tissue formation, angiogenesis, and collagen arrangement.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:49:56Z (GMT). No. of bitstreams: 1
ntu-94-R92B45025-1.pdf: 1646689 bytes, checksum: 867bb5dfc006135e78c55635f9f8f835 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents論文目次............................................... Ⅰ
圖目錄................................................. Ⅲ
表目錄................................................. Ⅴ
中文摘要............................................... 1
英文摘要............................................... 2
第一章 前言............................................ 4
第二章 文獻回顧........................................ 6
2-1 皮膚的功能及結構................................... 6
2-2 皮膚傷口的癒合過程................................. 10
2-3 製作傷口敷料的動機................................. 19
2-4 HEC 的特性介紹.................................... 23
2-5 多醣體 (β- Glucan ) .........,..................... 25
2-5-1 多醣體的生理活性................................. 25
2-5-2 多醣體與傷口復原................................. 27
2-5-3 多醣體的發展近況................................. 30
2-6 菇蕈多醣體(Mushroom β- Glucan)................... 31
第三章 材料與方法...................................... 34
3-1 實驗動物........................................... 34
3-2 實驗分組........................................... 34
3-3 多醣體的成分與含量測定............................. 35
3-3-1 多醣體的成分.................................. 35
3-3-2 多醣體的含量測定.............................. 36
3-4 實驗試劑的製備..................................... 38
3-5 製作大白鼠背部皮膚傷口模型......................... 40
3-6 評估傷口癒合過程的面積變化......................... 45
3-7 觀察傷口癒合過程的皮膚病理組織切片................. 46
3-7-1 製作新生皮膚組織切片.......................... 46
3-7-2 H&E 染色法.................................... 47
3-7-3 Masson 氏三色染色法........................... 49
3-7-4 觀察傷口癒合過程的組織生長變化................ 51
3-8 統計分析........................................... 51

第四章 實驗結果........................................ 52
4-1 多醣體含量的測定結果............................... 52
4-2 傷口癒合過程的外觀面積變化結果..................... 53
4-3 傷口癒合過程的外觀觀察及影像紀錄................... 57
4-4 傷口癒合過程的組織生長情形......................... 63
4-5 傷口癒合過程的膠原纖維生長及分布情................. 75
第五章 綜合討論........................................ 82
第六章 結論.............. .......................... 89
第七章 參考文獻........................................ 92
附錄一................................................ 100
dc.language.isozh-TW
dc.subject菇蕈多醣體zh_TW
dc.subject大白鼠zh_TW
dc.subject傷口癒合zh_TW
dc.subject羥乙基纖維素(HEC)zh_TW
dc.subjectRaten
dc.subjectHydroxyethyl cellulose ( HEC )en
dc.subjectMushroom β- Glucanen
dc.subjectWoud healingen
dc.title菇蕈多醣體對大白鼠傷口復原之影響zh_TW
dc.titleThe Effect of Mushroom β- Glucan in the Wound Healing on Raten
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee冉繁華,黃世鈴,王俊順
dc.subject.keyword大白鼠,傷口癒合,菇蕈多醣體,羥乙基纖維素(HEC),zh_TW
dc.subject.keywordRat,Woud healing,Mushroom β- Glucan,Hydroxyethyl cellulose ( HEC ),en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2005-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved