請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35347
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂理平 | |
dc.contributor.author | Fu-Chein Tasi | en |
dc.contributor.author | 蔡輔謙 | zh_TW |
dc.date.accessioned | 2021-06-13T06:49:02Z | - |
dc.date.available | 2006-08-01 | |
dc.date.copyright | 2005-08-01 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-28 | |
dc.identifier.citation | 第七章 參考文獻
Abrahamsen, A. R. and D. Geldart, “Behaviour of Gas-Fluidized Beds of Fine Powders Part Ι. Homogeneous Expansion”, Powder Technol., 26, 35-46 (1980a). Abrahamsen, A. R. and D. Geldart, “Behaviour of Gas-Fluidized Beds of Fine Powders Part ΙΙ. Voidage of the Dense Phase in Bubbling Beds”, Powder Technol., 26, 47-55 (1980b). Baskakov, A. P., V. G. Tuponogov and N. F. Filipovsky, “A Study of Pressure Fluctuations in a Bubbling Fluidized Bed”, Powder Technol., 40, 113-117 (1986). Chitester, D. C., R. M. Kornosky, L. S. Fan and J. P. Danko, “Characteristics of Fluidization at High Pressure”, Chem. Eng. Sci., 39, 253-261 (1984). Chyang, C. S., C. C. Huang and Y. S. Yang, “The effect of Distributor Design on the Fluidization Quality of a Gas Fluidized Bed”, J. Chinese Inst. Chem. Eng., 20, 187-193 (1989). Choi, J. H., T. W. Kim, Y. S. Moon, S. D. Kim and J. E. Son, “Effect of Temperature on Slug Properties in a Gas Fluidized Bed”, Powder Technol., 131, 15-22 (2003) Davidson, J. F. and D. Harrison, “Fluidized Particles”, Cambridge Univ. press., London (1963). Drahos, J., J. Cermak and K. Schugerl, “Characterization of Axial Nonuniformity in Fluidized Bed by the Amplitude of Local Pressure Drop Fluctuations”, Chem. Eng. Comm., 65, 49-60 (1988). Ergun, S., “Fluid Flow Through Packed Columns”, Chem. Eng. Prog., 48, 89 (1952). Fan, L. T., T. C. Ho, S. Hiraoka and W. P. Walawender, “Pressure Fluctuations in a Fluidized Bed”, AIChE J., 27, 388-396 (1981). Fan, L. T., T. C. Ho, S. Hiraoka and W. P. Walawender, “Measurement of the Rise Velocities of Bubbles,Slugs and Pressure Waves in a Gas-Solid Fluidized Bed Using Pressure Fluctuations Singals”, AIChE J., 29, 33-39 (1983). Fan, L. T., S. Hiraoka and S. H. Shin, “Analysis of Pressure Fluctuations in a Gas-Solid Fluidized Bed”, AIChE J., 30, 346-349 (1984). Geldart, D., “Type of Gas Fluidization”, Powder Technol., 7, 285-292 (1973). Hong, S. C., B. R. Jo and D. S. Doh, “Determination of Minimum Fluctuation Velocity by the Statistical Analysis of Pressure Fluctuations in a Gas-Solid Fluidized Bed”, Powder Technol., 60, 215-221 (1990). Kage, H., H. Yamaguchi, H. Ishii and Y. Matsuno, “Bubble Behavior in Bubbling Fluidized Beds of Binary Particles”, , J. Chem. Eng. Japan., 24, 525-531 (1991). Kang, W. K., J. P. Sutherland and G. L. Osberg, “Pressure Fluctuations in a Fluidized Bed with and without Screen Cylindrical Packings”, , I&EC. Fundam. 6(4), 499-504 (1967). Kunii, D. and O. Levenspiel, “Fluidization Engineering”, Butterworth-Heinemann, Boston, MA, U.S.A. (1991). Leu, L. P. and C. W. Lan, “Measurement of Pressure Fluctuations in Two-dimensional Gas-Solid Fluidized Beds at Elevated Temperatures”, J. Chem. Eng. Japan., 23, 555-562 (1990). Lirag, R. C. Jr. and H. Littman, “Statistical Study of the Pressure Fluctuations in a Fluidized Bed”, AIChE. Symp. Ser.,67(116), 11-22 (1971). Morooka, S. and M. Nishinaka, and Y. Kato, “Sedimentation Velocity and Expansion Ratio of Emulsion Phase in Gas-Solid Fluidized Bed”, Kagaku Kogaku, 37, 485-490 (1973). Oki, K., W. P. Walawender and L. T. Fan, “The Measurement of Local Velocity of Solid Particles”, Powder Technol., 18, 171-176 (1977). Puncochar, M., J. Drahos., J. Cermak and K. Selucky, “Evaluation of Minimum Fluidizing Velocity in Gas Fluidized Bed From Pressure Fluctuations”, Chem. Eng. Commun., 35, 81-87 (1985). Saxena, S. C. and G. J. Vogel, “The Measurement of Incipient Fluidization Velocities in a Bed of Corase Dolomite at Temperature and Pressure”, Trans. Inst. Chem. Eng., 55, 184-189 (1977). Sitnai, O., “Utilization of the Pressure Differential Records from Gas Fluidized Beds with Internals for Parameters Determination”, Chem. Eng. Sci., 37, 1059 (1982). Svoboda, K., J. Cermak, M. Hartman, J. Drahos and K. Selucky, “Pressure Fluctuations in Gas-Fluidized Beds at Elevated Temperatures”, Ind. Eng. Chem. Proc. Des. Dev. 22, 514-520 (1983). Toomey, R. D. and H. F. Johnstone, “Gaseous Fluidization of Solid Particles”, Chem. Eng. Progr., 48, 220-226 (1952). Verloop, J. and P. M. Heertjes, “Periodic Pressure Fluctuations in Fluidized Beds”, Chem. Eng. Sci., 29, 1035-1042 (1974). Wallis, G. B., “One-Dimensional Two-Phase Flow”, McGraw-Hill, New York, New York (1969). Whitehead, A. B., D. C. Dent, and G. N. Bhat, “Fluidisation Studies in Large Gas-Solid Systems Part Ι. Bubble Rise Rates”, Powder Technol., 1, 143-148 (1967). Wilkinson, D., “Determination of Minimum Fluidization Velocity by Pressure Fluctuation Measurement”, Can. J. Chem. Eng., 73, 562-565 (1995). 錢建嵩, 黃正中, 楊玉樹, 歐建志, 張瑞顯, 吳耿東及游逸將, “流體化床技術”, 高立圖書有限公司 (1992). 嚴永松,“不同粒徑對聲波振動B類粒子流體化之影響”,國立臺灣大學化學工程學研究所碩士論文 (1996). 劉德濱,“氣泡床之壓力擾動分析探討”,國立臺灣大學化學工程學研究所碩士論文 (2004). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35347 | - |
dc.description.abstract | 中文摘要
本實驗使用內徑0.1m、高1.8m的透明壓克力管之流體化床,以平均粒徑80 FCC粒子與60 玻璃砂等A類粒子為研究對象,在不同靜床高與不同軸向壓力探針量測位置下,探討壓力擾動偏差值與通入氣體流速之關係,再更進一步利用壓力擾動變異數求得Umb。由結果顯示壓力探針在單點位置分散板上方20cm或30cm處與雙點位置(10cm-20cm或20cm-30cm)所求出的Umb值較其它量測位置準確。本實驗中如要求得較為準確之Umb值,分散板上方單點位置20cm或30cm處與雙點位置(10cm-20cm或20cm-30cm)為最佳的測量方式。 利用交互相關函數(cross-correlation function)求出氣泡延遲時間,進ㄧ步再求得氣泡上升速度。由結果發現FCC粒子流化床在相同壓力探針量測位置下,Ub隨著靜床高的高度增加而增加;而對於玻璃砂粒子而言,靜床高對Ub並無影響。並發現探針量測位置在管中心且靠近床表面所得Ub值會大於在管壁所得到的結果。 由主頻分析的結果可知,單點、雙點量測位置的主頻隨著氣速與靜床高增加而下降,而單點位置的主頻不隨壓力探針軸向高度增加而改變。但是雙點量測位置(plenum-10cm, plenum-20cm…)的主頻在低氣速時隨著測量位置高度增加而下降,高氣速時主頻則不隨測量位置高度增加而有任何改變。 | zh_TW |
dc.description.abstract | Abstract
In order to understand the effect of bed heights and probe locations on standard deviation of pressure fluctuations have been measured by a absolute pressure and differential pressure method in a bubbling fluidized bed of 0.1m i.d. and height of 1.8 m and, with respect to variations in gas velocity. Air was used as fluidizing gas and fluid catalytic cracking (FCC) catalyst particles and glass bead particles (Geldart’s group A particles) as bed material. The result showed that the variance of pressure fluctuations for Geldart’s group A particles was a practically linear function of the gas velocity. Thus, more consistent value of Umb was determined by using absolute pressure probes (20cm,30cm) and differential pressure probes (10cm-20cm,20cm-30cm) in this study. The cross-correlation function was used to process the signal from probes each separated by a gap are suitable for calculation of the bubble residence time and bubble rising velocity in this study. The value of Ub was found to be nearly independent of bed heights for glass bead particles but to increase with increasing static bed height for FCC particles. In this study, Bubbles near the surface of the bubbling fluidized bed rose faster in the centre than the wall. The dominant frequency was found to be nearly independent of probe locations with absolute pressure probes but to decrease with increasing air velocity and static bed height at absolute, differential pressure probes (plenum-10cm, plenum-20cm…). The dominant frequency decreased with increasing heights of probe locations at differential pressure probes (plenum-10cm, plenum-20cm…) for low gas velocity, but it did not change at high gas velocity. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:49:02Z (GMT). No. of bitstreams: 1 ntu-94-R92524054-1.pdf: 1772465 bytes, checksum: 20bb47a539e2e96ddefe1901c8c21d4c (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 目 錄
目 錄 中文摘要 I 英文摘要 Ⅱ 目錄 Ⅲ 圖表索引 V 第一章 緒論 1 1-1. 前言 1 1-2. 研究目的 5 第二章 文獻回顧 6 2-1. 流體化粒子分類 6 2-2. 固體粒子之最小流體化速度 10 2-3. 固體粒子之最小氣泡速度 13 2-3.1. Morooka et al. method (1973) 13 2-3.2. Abrahamsen et al. method (1980) 15 2-4. 氣泡上升速度 16 2-4.1. 氣泡上升速度與氣泡大小之關係 17 2-5. 壓力擾動的來源 18 第三章 實驗裝置與步驟 19 3-1. 實驗裝置 19 3-2. 實驗固體粒子性質 23 3-3. 數據處理 24 3-4. 實驗步驟 27 3-4.1. 氣泡床之壓力訊號測量與壓力擾動標準偏差的計算 27 3-4.2. 改變參數 27 第四章 結果與討論 28 4-1. 在氣泡床內之壓力擾動標準偏差(S.D) 28 4-1.1. A類粒子在不同靜床高下單點(plenum,10cm, 20cm…) 壓力擾動標準偏差(S.D)的量測 28 4-1.2. A類粒子在不同靜床高下雙點(plenum-10cm, plenum-20cm…)壓力擾動標準偏差(S.D)的量測 32 4-1.3. A類粒子在不同靜床高下雙點(10cm-20cm, 20cm-30cm…)壓力擾動標準偏差(S.D)的量測 35 4-1.4. Geldart A類與B類粒子在氣泡床中壓力擾動的差異 38 4-2. 壓力擾動變異數求最小氣泡速度 43 4-2.1. 不同靜床高下單點(plenum, 10cm, 20cm…)壓力擾動 變異數求Umb的比較 43 4-2.2. 不同靜床高下雙點(plenum-10cm, plenum-20cm…) 壓力擾動變異數求Umb的比較 54 4-2.3. 不同靜床高下雙點(10cm-20cm, 20cm-30cm…) 壓力擾動變異數求Umb的比較 63 4-2.4. 不同種類的A類粒子壓力擾動變異數求Umb的比 較結果 70 4-2.5. 決定Umb的適用範圍 70 4-3. 氣泡上升速度 73 4-3.1. 延遲時間取樣點數對氣泡上升速度的影響 73 4-3.2. 固定靜床高下,壓力探針位置對氣泡上升速度的 影響 76 4-3.3. 固定壓力探針位置下,靜床高對氣泡上升速度的 影響 81 4-3.4. 不同靜床高下,壓力探針間距長度對氣泡上升速 度的影響 86 4-3.5. 不同A類粒子之最小氣泡上升速度 98 4-3.6. 壓力探針長度在徑向位置對氣泡上升速度的影響 100 4-4. 主頻分析 109 4-4.1. 單點量測位置(plenum, 10cm, 20cm…)主頻分析 109 4-4.2. 雙點量測位置(plenum-10cm, plenum-20cm…) 主頻分析 116 第五章 結果與討論 119 5-1. 單點、雙點位置的測量 119 5-2. 主頻分析 120 第六章 符號說明 121 第七章 參考文獻 123 Appendix 1 :交互相關函數(cross-correlation function)之LabView程式 127 Appendix 2 : Ub對氣速的數據之數值處理 128 | |
dc.language.iso | zh-TW | |
dc.title | A類粒子於流體化床中之流力行為探討 | zh_TW |
dc.title | Hydrodynamic Study in Fluidized Beds for Geldart Group A Powders | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施信民,王榮基 | |
dc.subject.keyword | 氣泡床,最小氣泡速度,氣泡上升速度, | zh_TW |
dc.subject.keyword | bubbling fluidized bed,minimum bubblinging velocity,bubble rising velocity, | en |
dc.relation.page | 130 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。