請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35311完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁啟德(Chi-Te Liang) | |
| dc.contributor.author | Shih-Kai Lin | en |
| dc.contributor.author | 林士凱 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:47:40Z | - |
| dc.date.available | 2005-08-01 | |
| dc.date.copyright | 2005-08-01 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-28 | |
| dc.identifier.citation | [1] S.Yamaguchi, M. Kariya, S. Nitta, T. Takeuchi, C. Wetzel, H. Amano,
and I. Akasaki, J. Appl. Phys. 85, 7682 (1999). [2] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779 (2003). [3] H. Lu, W. J. Schaff, J. Huang, H. Wu, W. Yeo, A. Pharkya, and L. F. Eastman, Appl. Phys. Lett. 77, 2548 (2000). [4] H. Lu, W. J. Schaff, J. Huang, H. Wu, G. Koley, and L. F. Eastman, Appl. Phys. Lett. 79, 1489 (2001). [5] I. Akasaki, H. Amano, N. Koide, M. Kotaki, and K. Manabe, Physica B 185, 428 (1993). [6] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., Part 2 32, L8 (1993). [7] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys., Part 2 35, L74 (1996). [8] R. Juza and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938). [9] R. Juza and A. Rabenau, Z. Anorg. Allg. Chem. 285, 212 (1956). [10] T. Renner, Z. Anorg. Allg. Chem. 298, 28 (1958). [11] J. Pastrnak and L. Souckova, Phys. Status Solidi 3, K71 (1963). [12] G. V. Samsonov, Nitridy Kiev, 1969. [13] H. J. Hovel and J. J. Cuomo, Appl. Phys. Lett. 20, 71 (1972). [14] J. W. Trainor and K. Rose, J. Electron. Mater. 3, 821 (1974). [15] K. Osamura, K. Nakajima, Y. Murakami, H. P. Shingu, and A. Ohtsuki, Solid State Commun. 11, 617, (1972). [16] K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys. 46, 3432 (1975). [17] N. Puychevrier and M. Menoret, Thin Solid Films 36, 141 (1976). [18] T. Matsuoka, H. Tanaka, T. Sasaki, and A. Katsui, Proceedings of the Sixteenth International Symposium on GaAs and Related Compounds, Karuizawa, Japan, September 25-29, 1989 (Institute of Physics, Bristol, 1990), p.141. [19] A. Wakahara and A. Yoshida, Appl. Phys. Lett. 54, 709 (1989). [20] A. Wakahara, T. Tsuchiya, and A, Yoshida, J. Cryst. Growth 99, 385 (1990). [21] T. L. Tansley and R. J. Egan, Phys. Rev. B 45, 10942 (1992). [22] T. L. Tansley and R. J. Egan, Mater. Res. Soc. Symp. Proc. 242, 395 (1992). [23] A. Yamamoto, Y. Murakami, K. Koide, M. Adachi, and A. Hashimoto, Phys. Status Solidi B 228, 5 (2001). [24] A. Yamamoto, T. Tanaka, K. Koide, and A. Hashimoto, Phys. Status Solidi A 194, 510 (2002). [25] C. Stampfl, C. G. Van de Walle, D. Vogel, P. Kruger, and J. Pollmann, Phys. Rev. B 61, R7846, (2000). [26] D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, Appl. Phys. Lett. 80, 258 (2002). [27] David J. Griffiths, Introduction to electrodynamics (3rd edn), Prentice Hall, 1999. [28] C. Kittel, Introduction to Solid State Physics (7th edn), Wiley, 1996. [29] Neil W. Arshcroft and N. David Mermin, Solid State Physics, Harcourt College, 1976. [30] C.-A. Chang, C.-F. Shi, N. C. Chen, P.-H. Chang, and K.-S. Liu, Phys. Status Solidi C 1/10, 2559 (2004). [31] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004). [32] J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1979). [33] S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar, and L. F. Eastman, J. Appl. Phys. 83, 826 (1998). [34] S. N. Mohammad and H. Morkoc, Proc. Quantum Electron. 20, 361, (1996). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35311 | - |
| dc.description.abstract | 本論文主要是探討多銦氮化銦鎵薄膜InxGa1-xN (x = 1, 0.98, 0.92,
0.8, 0.7) 的電子傳輸性質。我們測量了大溫度範圍下氮化銦鎵的電子 傳輸特性。我們發現在實驗誤差範圍內,樣品的載子濃度在測量的溫 度範圍內幾乎與溫度無關,這是金屬的行為。此外我們利用van der Pauw 四點量測法計算樣品的電阻率。綜合電阻率與載子濃度的數據 顯示,我們的樣品隨著鎵的成分上升,有一個由金屬到半導體的轉 變。我們也計算了樣品的載子遷移率,載子遷移率在整個量測的溫度 範圍內,隨著鎵成分的升高而降低,這也印證了氮化銦的傳輸特性優 於氮化鎵。由於金屬電阻率在低溫下遵守Bloch T5 定理,對於銦濃 度大於等於92% 的樣品,我們檢查了它們的電阻率與Bloch T5 定 理的符合程度。分析的結果顯示高銦成分的樣品的電阻率非常符合 Bloch T5 定理,從而進一步的支持了高銦濃度的氮化銦鎵薄膜傳輸特 性與金屬十分類似。 | zh_TW |
| dc.description.abstract | This thesis focuses on electron transport properties in InxGa1−xN (x =1,
0.98, 0.92, 0.8, 0.7) thin films. We have performed transport measurements on InxGa1−xN thin films over a wide temperature range. We observed that within experimental error, the carrier densities are temperature independent. Besides, the resistivities, combined with the carrier densities, show a tendency of transition from metal to semiconductor with increasing Ga composition. The calculated mobility shows that for metallic like samples (InxGa1−xN with x ≥0.92), the dominant scattering mechanism is the imperfection scattering over the whole temperature range. We also showed that Bloch T5 curves fit very well the resistivities of samples InxGa1−xN with x =1, 0.98, 0.92, once again supporting that very high In composition InxGa1−xN films can be considered as degenerate electron systems in which the Fermi level is much higher than conduction-band bottom over the whole measurement range. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:47:40Z (GMT). No. of bitstreams: 1 ntu-94-R92222049-1.pdf: 1710478 bytes, checksum: 9f9b555b81d69e2dccb11aa32cfd2405 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Theoretical background 4 2.1 Classical Hall effect . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Van der Pauwmethod . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Electrical transport properties . . . . . . . . . . . . . . . . . . 10 2.3.1 Ohm’s law and electrical conductivity . . . . . . . . . . 10 2.3.2 Relaxation time approximation . . . . . . . . . . . . . 12 2.3.3 The temperature-dependent electron resistivity of metals 14 3 Sample fabrication and Hall measurements 20 3.1 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Metal-organic vapor phase epitaxy . . . . . . . . . . . 20 3.1.2 Sample structure . . . . . . . . . . . . . . . . . . . . . 21 3.2 Hall measurements . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Ohmic contacts . . . . . . . . . . . . . . . . . . . . . . 23 3.2.3 Elimination of background voltage . . . . . . . . . . . 25 4 Electrical properties of In-rich InxGa1−xN films 27 4.1 Deviation of the Rxy fromzero at zero magnetic field . . . . . 27 4.2 Temperature dependence of carrier density, resistivity and mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Curve fitting of Bloch T5 law . . . . . . . . . . . . . . . . . . 38 5 Conclusions 42 Bibliography 44 | |
| dc.language.iso | en | |
| dc.subject | 氮化銦鎵 | zh_TW |
| dc.subject | InGaN | en |
| dc.title | 多銦氮化銦鎵薄膜之電子傳輸特性 | zh_TW |
| dc.title | Electron transport in In-rich InxGa1-xN films | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張本秀(Pen-Hsiu Chang) | |
| dc.contributor.oralexamcommittee | 陳永芳(Yung-Fang Chen) | |
| dc.subject.keyword | 氮化銦鎵, | zh_TW |
| dc.subject.keyword | InGaN, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
