Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35303
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馮哲川
dc.contributor.authorHung-Chiao Linen
dc.contributor.author林宏橋zh_TW
dc.date.accessioned2021-06-13T06:47:22Z-
dc.date.available2007-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-28
dc.identifier.citationchapter 1
[1] L. Rayleigh, G. G. Stokes, Proc. Royal Soc. London 75,
199 (1905).
[2] A. Smekal, Naturwiss. 11, 873 (1923).
[3] G. Herzberg, ‘Infrared and Raman spectra of
Polyatomic Molecules’, Van Nostrand, New York (1945).
[4] Sir C. V. Raman, K. S. Krishnan, Ind. J. Phys. 2, 387
(1928).
[5] Sir C. V. Raman, K. S. Krishnan, Nature 121, 501
(1928).
[6] G. S. Landsberg, L. I. Mandelstam, Naturwiss. 16, 557
(1928).
[7] G. Placzek, in Handbuck der Radiologie, ed. E. Marx,
Vol. 6, part2, p. 209, Akademische
Verlagsgesellschaft, Leipzig (1934).
[8] Th. Gessmann, E.F. Schubert, J. Appl. Phys. 95, 2203
(2004).
[9] W.C. Peng, Y.S. Wu, Appl. Phys. Lett. 84 (2004) 1841.
[10] J.R. Dong, J.H. Teng, S.J. Chua, B.C. Foo, Y.J. Wang,
L.W. Zhang, H.R. Yuan, S. Yuan, J. Appl. Phys. 95,
5252 (2004).
[11] A. Shima, M. Kato, Y. Nagai, T. Motoda, T. Nishimura,
E. Omura, M. Otsubo, IEEE J. Selected Topics Quantum
Electron. 1, 734 (1995).
[12] H.K. Yow, P.A. Houston, C.C. Button, T.W. Lee, J.S.
Roberts, J. Appl. Phys. 76, 8135 (1994).
[13] X.B. Zhang, R.D. Heller, M.S. Noh, R.D. Dupuis, G.
Walter, N. Holonyak, J. Appl. Phys. Lett. 83, 1349
(2003).
[14] C.Y. Liu, S. Yuan, J.R. Dong, S.J. Chua, M.C. Y.
Chan, S.Z. Wang, J. Appl. Phys. 94, 2962 (2003).
[15] A. Zunger, S. Mahjan, in Handbook on Semiconductors,
ed. T. S. Moss, Vol. 3, ed. S. Mahajan, (Elsevvier
Scince B. V., 1994), pp. 1399.
[16] G.B. Stringfellow, L.C. Su, Y.E. Strausser, J.T.
Thomton, Appl. Phys. Lett. 66, 3155 (1995).
[17] Z.C. Feng, E. Armour, I. Ferguson, R.A. Stall, L.
Malikova, T. Holden, J.Z. Wan, F.H. Pollak, M.
Pavlosky, J. Appl. Phys. 85 3824, (1999).
[18] K.H. Chang, R. Gibala, D.J. Srolovitz, P.K.
Bhattacharya and J.F. Mansfield, J. Appl. Phys. 67,
4093 (1990).
[19] R. Beanland, M. Aindow, T.B. Joyce, P. Kidd, M.
Lourenco and P.J. Goodhew, J. Crystal Growth 149, 1
(1995).
[20] A.M. Andrews, A.E. Romanov, J.S. Speck, M. Bobeth and
W. Pompe, Appl. Phys. Lett. 77, 3740 (2000).
[21] T. Asano, T. Nakao, H. Matada, T. Tambo, H. Ueba and
C. Tatsuyama, J. Appl. Phys. 87, 8759 (2000).
[22] H.L. Seng, T. Osipowicz, T.C. Sum, E.S. Tok, G.
Breton, N.J. Woods and J. Zhang, Appl. Phys. Lett.
80, 2940 (2002).
[23] A. Portavoce, I. Berbezier, P. Gas and A. Ronda,
Phys. Rev. B 69, 155414 (2004).
[34] S.H. Olsen, A.G. O”Neil, S. Chattopahyay, K.S.K.
Kwa, L.S. Driscoll, D.J. Norris, A.G. Cullis, R.D.
Robbins and J. Zhang, Semicond. Sci. Technol. 19, 707
(2004).
[25] M. Kondow, S. Minagawa and S. Satoh, Appl. Phys.
Lett. 51, 2001 (1987).
[26] M. Kubo, M. Mannoh and T. Narusawa, J. Appl. Phys.
66, 3767 (1989).
[27] H. Richter, Z.P. Wang and L. Ley, Solid State Commu.
39, 625 (1981).
[28] P. Parayanthal and Fred H. Pollak, Phys. Rev. Lett.
52, 1822 (1984).
[29] T. Ruf, J. Serrano, M. Cardona, P. Pavone, M. Pabst,
M. Krisch, M. D'Astuto, T. suski, I. Grzegory, M.
Leszczynski, Phys. Rev. Lett. 86 906, (2001).
[30] I. H. Campbell, P. M. Fauchet, Solid State Commun.
58 (1986) 739.
[31] Leah Bergman, Michael D. Bremser, William G.
Perry, Robert F. Davis, Mitra Dutta and Robert J.
Nemanich, Applied Physics Letters 71, 2157 (1997).
chapter 2
[1] S. Nakamura, S. Pearton, G. Fasol, ‘The Blue Laser
Diode – the complete story, Springer, Berlin (2000).
[2] H. Spohn, ‘Dynamics of Charged Paticles and Their
Radiation Field’, Camberige University Press (2004).
[3] L. I. Schiff, ‘Quantum Mechanics’, 3rd ed: McGraw-
Hill, New York (1968).
[4] G. Abstreiter, M. Cardona, A. Pinczuk, in ‘Light
Scattering in Solids IV’, ed. M. Cardona, G.
Gűntherodt, p.5, Springer-Verlag, Berlin (1984).
[5] J. J. Sakurai, ‘ Modern Quantum Mechanics’, Rev. ed.
S. F. Tuan, Addison-Wesley Pub. Co., New York (1994).
[6] P. M. Platzman, N. Tzoar, Phys. Rev. 136, A11 (1964).
[7] R. Loudon, ‘The Quantum Theory of Light’, 3rd ed.,
Oxford University Press, New York (2000).
[8] S. S. Jha, Comments Solid State Phys., 4, 111 (1972).
[9] G. D. Mahan, ‘Many-Particle Physics’, 2nd ed.,
Plenum Express, New York (1990).
[10]P. M. Platzman, P. A. Wolf, ‘Waves and
interactions in solid state plasmas’, Academic Press,
New York, (1973).
[11] P. M. Platzman, Phys. Rev. 139, A379 (1965).
[12] N. W. Ashcroft, N. D. Mermin, ‘Solid State
Physics’, Saunders College, Philadelphia (1976).
[13] P. A. Wolff, Phys. Rev. Lett. 16, 225 (1966).
[14] M. Cardona, in ‘Light Scattering in Solids II’, ed.
M. Cardona, G. Gűntherodt, p.19, Springer-Verlag,
Berlin (1982).
[15] R. Shankar, ‘Principles of Quantum Mechanics’, 2nd
ed., Plenum Press (1994).
[16] J. D. Jackson, ‘Classical electrodynamics’, 3rd
ed., Wiley, New York (1999).
[17] W. Hayes, R. Loudon, ‘Scattering of Light by
Crystals’, Wiley, New York, (1978).
[18] A. Mooradian, G. B. Wright, Phys. Rev. Lett. 16
(1966) 999.
[19] D. J. Griffiths, ‘Introduction to electrodynamics',
Prentice Hall, New Jersey (1999).
[20] M. V. Klein, in ‘Light Scattering in Solids I’,
ed. M. Cardona, p.147, Springer-Verlag, Berlin (1983).
[21] W. A. Harrison, ‘Solid State Theory’, McGraw-Hill,
New York (1970).
[22] Merzbacher. e., ‘Quantum Mechanics’, 3rd ed., Wiley,
New York (1998).
[23] L. D. Landau, E. M. Lifschitz, ‘Classical Field
Theory’, Addison-Wesley, New York (1962).
[24] D. T. Hon, W. L. Faust, Appl. Phys. 1, 241 (1973).
[25] R. A. Cowley, J. Phys. (Paris) 26, 659 (1965).
[26] J. F. Scott, T. C. Damen, J. Ruvalds, Zawadowski,
Phys. Rev. B 3, 1295 (1971).
[27] M. V. Klein, B. N. Ganguly, P, J. Colwell, Phys. Rev.
B 6, 2380 (1972).
[28] C. Y. Chen, Phy. Rev. B 27, 1436 (1983).
[29] P. J. Colwell, M. V. Klein, Phys. Rev. B 6, 498
(1972).
[30] G. Irmer, V. V. Toporov, B. H. Bairamov, J. Monecke,
Phys. Stat. Sol.(b) 119, 595 (1983).
[31] L. D. Landau, E. M. Lifshitz, ‘Statistical
physics’, Oxford, New York (1980).
[32] W. L. Faust, C. H. Henry, Phys. Rev. Lett. 17, 1265
(1966).
[33] J. Menèndez, M. Cardona, Phys. Rev. Lett. 3, 1297
(1983).
[34] F. Demangeot, C. Pinquier, J. Frandon, M. Gaio, O.
Briot, B. Maleyre, S. Ruffenach, B. Gil, Phys. Rev. B
71, 104305 (2005).
[35] M. Ramsteiner, O. Brandt, K. H. Ploog, Phys. Rev. B
58, 1118 (1998).
[36] N. D. Mermin, Phys. Rev. B 1, 2362 (1970).
[37] Peter Y. Yu, Manuel Cardona, ‘Fundamentals of
Semiconductors’, p. 288, Springer, New York (1996).
[38] L. J. van der Pauw, Philips Res. Repts. 13, 1 (1958).
[39] W. R. Runyan, T. J. Shaffner, ’Semiconductor
Measurements and Instrumentation’, McGraw-Hill, New
York (1998).
[40] R. Trommer, A. K. Ramds, in ‘Physics of
Semiconductors 1978’, ed. B. L. H. Wilson, Ins.
Phys. London, London (1979).
[41] C. F. Klingshirn, ‘Semiconductor Optics’, Springer,
Berlin (1997).
[42] V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N.
Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B.
Smirnov, A. P. Mirgorodsky, R. A. Evarestov, Phys.
Rev. B 58, 12899 (1998).
[43] F. Demangeot, J. Frandon, M. A. Renucci, N.
Grandjean, B. Beaumont, J. Massies, P. Gibart, Solid
State Commun. 106, 491 (1998).
[44] F. Demangeot, C. Pinquier, J. Frandon, M. Gaio,
Obriot, B. Maleyre, S. Ruffenach, B. Gil, Phys. Rev.
B 71, 104305 (2005).
[45] H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P.
Litvinchuk, A. Hoffmann, C. Thomsen, Phys. Rev. B 55,
7000 (1997).
[46] A. V. Rodina, B. K. Meyer, Phys. Rev. B. 64, 245209
(2001).
[47] T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, K.
Ohtsuka, J. Appl. Phys. 82, 3528 (1997).
[48] T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto,
N. Koide K. Manabe, J. Appl. Phys. 75, 1098 (1994).
[49] C. Wetzel, W. Walukiewicz, J. W. III. Ager, Mat. Res.
Soc. Symp. Proc. 149, 567 (1997).
[50] Z. C. Feng, Opt. Eng. 41, 202 (2002).
[51] D. Olego, M. Cardona, Phys. Rev. B 24, 7217 (1981).
[52] D. Oligo, M. Cardona, Solid State Commu. 32, 375
(1979).
[53] M. Ramsteiner, O. Brandt, K. H. Ploog, Phys. Rev. B.
58, 1118 (1998).
[54] J. S. Thakur, D. Haddad, V. M. Naik, R. Naik, G. W.
Auner, H. Lu, W. J. Schaff, Phys. Rev. B 71, 115203
(2005).
[55] G. Irmer, M. Wenzel, J. Monecke, Phys. Rev. B 56,
9524 (1997).
[56] U. Nowak, W. Richter, G. Sachs, Phys. Stat. Sol.(b)
108, 131 (1981).
[57] S. Buchner, E. Burstein, Phys. Rev. Lett. 33, 908
(1974).
[58] B. Abstreiter, R. Trommer, M. Cardona, A. Pinczuk,
Solid State Commun. 30, 703 (1979).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35303-
dc.description.abstractchapter 1, we will first discuss the development of Raman scattering and its basic theory. Further, the spacial correlation model which is used in the this chapter to realize the characterization of AlInGaP thin films will be performed. And about the thin films, two series of (AlxGa1-x)0.5In0.5P films were grown on lattice-matched GaAs by low pressure metalorganic chemical vapor deposition under different conditions and studied by Nomarski microscopy (NM), atomic force microscopy (AFM), photoluminescence (PL) and Raman scattering. NM and AFM images show cross-hatch patterns, related to dislocations and lattice mismatch, from one set of samples, but none from another set of films. Comparative PL and Raman measurements and analyses indicated the correlation between surface and optical properties. The degree of variations in compositions and film quality with the growth conditions were found from the spectral analyses. Raman spectral features are more sensitive to the sample growth parameter variations. The line shape analysis of line width, integrated intensity ratio and spacial correlation model fittng leads to information about the order of the sample crystalline quality. And comparison of these measurement results, the results from spacial correlation model analysis will be identified with the others. Accordingly, this method is more convenient method to characterize the crystalline quality.
chapter 2, we will discuss the electronic Raman scattering based on the LO phonon-plasmon interaction effect, and first interpret the motivation and relative application. Furthermore, since the scattering theory is very miscellaneous, the theory from the fundamental to the forming model will be completely performed. Under different considerations, the mechanisms here will focus on the charge density fluctuation, deformation-optical and electro-optical effect and their perturbed result. After the basic theory, the simulation on the GaN and InN material will be also performed and separately predict the both wave vector dependent (long wave length) and wave vector nonconservation effect. We have prepared the Hall measured data of GaN samples to be a contrast and compare with the simulation results respectively. Likewise, the simulation results of the wave vector nonconservation are very unusual to the other published papers but consisted to the basic theory. Accordingly, we will comment on these papers (provide 3 Physical Review B papers). Finally, we will use these points to reform another reasonable model so that the more accurate recursive data to the Hall measurement could be obtained. The result consists with our points.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:47:22Z (GMT). No. of bitstreams: 1
ntu-94-R92941026-1.pdf: 5892309 bytes, checksum: 46a2a38a047e3d17c8871c9b286bc818 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsFigure List III
Table List VII
Chapter 1 Characterization of AlInGaP Thin Film 1
Abstract 1
1.1 Introduction 2
1.1.1 Raman scattering 2
1.1.2 AlGaInP Material 4
1.2 Theory 5
1.2.1 Raman spatial correlation model 5
1.3 Experiment 8
1.3.1 Samples and experiment equipment 9
1.3.2 Surface morphology from Nomarski
interference microscopy 10
1.3.3 Surface morphology from atomic
force microscopy (AFM) 11
1.3.4 Photoluminescence (PL) 12
1.3.5 Raman Scattering 14
1.4 DISCUSSION 16
1.5 CONCLUSIONS 22
Reference 24
Chapter 2 Electronic Raman Scattering in GaN 33
Abstract 33
2.1 Introduction (motivation) 34
2.2 Theory 35
2.2.1 Light Scattering from Free Carrier 35
2.2.2 Light Scattering from the Deformation
Potential and Electro-Optical Effect 48
2.2.3 Dielectric Function 54
2.3 Sample Preparation and measurement system 57
2.3.1 Samples 57
2.3.2 Raman measurement 58
2.3.3 Hall measurement 58
2.4 Results and Discussion 60
2.4.1 Simulation of Dielectric Function by Drude
Model: the Wave Vector independent Case 60
2.4.2 LO Phonon-Plasmon Interaction Fitting In
GaN: the Wave Vector Independent Case 73
2.4.3 Simulation of LO Ponon-Plasmon Interaction
in GaN: the Wave Vector Dependent Case 86
2.4.4 LO Phonon-Plasmon Interaction Fitting
In GaN: the Wave Vector dependent Case 113
2.5 Conclusion 122
Reference 124
dc.language.isoen
dc.title三五族相關材料之拉曼分析zh_TW
dc.titleRaman Studies on III-V Relative Materials:
Especially on LO Phonon-Plasmon Interaction Effect
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉,邱奕鵬
dc.subject.keyword拉曼,氮化鎵,聲子,電漿子,電漿,zh_TW
dc.subject.keywordRaman,GaN,Phonon,Plasmon,Plasma,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2005-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
5.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved