Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35280
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝志誠
dc.contributor.authorYing-Chun Leeen
dc.contributor.author李英群zh_TW
dc.date.accessioned2021-06-13T06:46:32Z-
dc.date.available2005-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-28
dc.identifier.citation1. 王湧鋒。2004。奈米直寫儀光學頭之奈米壓印製作方法的先導性研究。碩士論文。台北市:台灣大學應用力學研究所。
2. 莊達人。2002。VLSI製造技術。五版。台北:高立。
3. 陳坤玉。2002。聚亞醯胺/二氧化矽奈米複合材料之製備與性質研究。碩士論文。中壢市:中原大學化學研究所。
4. Bailey, T., B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson. 2000. Step and flash imprint lithography: Temple surface treatment and detect analysis. J. Vac. Sci. Technol. B18(6), p3572-3577.
5. Chang, C. L., Ching-Liang Dai, Honglin Chen, Kaihsiang Yen, Jing-Hung Chiou, Pei-Zen Chang. 1998. High-aspect-ratio fine-line metallization. Proceedings of SPIE 3511, p357-363.
6. Chou, S. Y., P. R. Krauss, and P. J. Renstrom. 1995. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67(21), p3114-3116.
7. Chou, S. Y., P. R. Krauss, and P. J. Renstrom. 1996. Nanoimprint lithography. J. Vac. Sci. Technol. B14, p4129-4133.
8. Colburn, M., S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson. 1999. Step and flash imprint lithography: a new approach to high-resolution patterning. Proceedings of SPIE 3676, p379-391.
9. Colburn, M., T. Bailey, B. J. Choi, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson. 2001. Development and advantages of step and flash imprint lithography. Solid State Technology 46, p67-76.
10. Dahm, G.., I. W. Rangelow, P. Hudek, H. W. Koops. 1995. Quartz etching for phase shifting masks. Microelectronic Engineering 27, p263-266.
11. Danel, J. S. and G. Delapierre. 1991. Quartz: a material for micordevices. J. Micromech. Microeng. 1, p187-198.
12. Guo, L Jay. 2004. Recent progress in nanoimprint technology and its applications. J. Phys. D: Appl. Phys. 37, p123-141.
13. Hedlund, C., Ulf Lindberg, Urban Bucht, and Jan Soderkvist. 1993. Anisotropic etching of Z-cut quartz. J. Micromech. Microeng. 3, p65-73.
14. Komuro, M., J. Taniguchi, S. Inoue, N. Kimura, Y. Tokano, H. Hiroshima, and S. Matsui. 2000. Imprint Characteristic by Photo-Induced Solidification of Liquid Polymer. Jpn. J. Appl. Phys. 39, p7075-7079.
15. Komuro, M., Y. Tokano, J. Taniguchi, T. Kawasaki, I. Miyamoto, and H. Hiroshima. 2002. Improvement of imprinted pattern uniformity using sapphire mold. Jpn. J. Appl. Phys. 41, p4182-4185.
16. Kovacs, G. T. A. 2000. Micromachined transducers sourcebook. Internation edition. P34. Taipei: The McGraw-Hill Companies.
17. Menz, W., J. Mohr, and O. Paul. 2001. Microsystem Technology. p134. Weinheim: WILEY-VCH.
18. Pfeiffer, K., F. Reuther, M. Fink, G. Gruetzner, P. Carlberg, I. Maximov, L. Montelius, J. Seekamp, S. Zankovych, C.M. Sotomayor-Torres, H. Schulz, and H.C. Scheer. 2003. A comparison of thermally and photochemically cross-linked polymers for nanoimprinting. Microelectronic Engineering 67-68, p266-273.
19. Rangsten, P., Christer Hedlund, Ilia V Katardjiev, and Ylva Backlund. 1998. Etch rates of crystallographic planes in Z-cut quartz-experiments and simulation. J. Micromech. Microeng. 8, p1-6.
20. Resnick, D. J., D. Mancini, M. J. Dauksher, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C.G. Willson. 2003. Improved step and flash imprint lithography templates for nanofabrication. Microelectronic Engineering 69, p412-419.
21. Sagiv, Jacob. 1980. Organized monolayers by adsorption. 1.Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc. 102, p92-98.
22. Silberzan, P., L. Legar, D. Ausserre, and J. J. Benattar. 1991. Silanation of silica surfaces. A new method of constructing pure or mixed monolayers. Langmuir 7, p1647-1651.
23. Soane, David S., and Martynenko, Zoya. 1989. Polymers in Microelectronics. 1st ed., p70, 132-139, 153-212. The Netherlands: Elsevier Science Publishers B.V.
24. Taniguchi, J., Y. Tokano, I. Miyamoto, M. Komuro, and H. Hiroshima. 2002. Diamond nanoimprint lithography. Nanotechnology 13, p592-596.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35280-
dc.description.abstract石英的材料特性包括壓電性、絕緣性、透光性、高硬度、熱穩定性高等,是一種極具發展為元件潛力的材料。在石英材料上發展微奈米機電系統技術,最主要的瓶頸在於其加工困難度及非導電性在進行電子束微影時所產生之電荷累積效應。
在以石英作為材料的應用中,最新發展且獲普遍重視的就屬奈米壓印微影技術中的母模部分。奈米壓印微影有別於傳統微影技術,省去了必須逐件曝光、顯影等的製程步驟,取而代之的是先在母模定義出特定圖形,再重複壓印到塗佈有光阻的基材上,翻印母模上的圖形,如此一來,不僅大幅縮短製程所需時間與成本,更具備高產能的特性。
本研究使用導電樹酯Espacer300作為導電層,消除了石英在電子束曝光時產生的電荷累積。在電子束微影完成後,以金屬蒸鍍、lift-off技術,配合反應性離子乾蝕刻技術,製作出具備奈米線寬圖形的石英母模,而後於母模上進行脫模層表面處理後,進行光固化型奈米壓印,完成圖形之翻印。
本研究在電子束微影方面,已成功完成100奈米線寬的圖形;在lift-off技術方面,已完成200奈米線寬的金屬擋罩製作;在母模及壓印方面,已完成500奈米線寬的母模及圖形翻印。
zh_TW
dc.description.abstractQuartz has much potential to be developed as device because of its material properties including piezoelectricity, isolation, transparent, high hardness, and high thermal stability. The major obstacle to develop MEMS and NEMS technique on quartz is the machining difficulty and the charging problem resulted from isolation in e-beam exposure process.
The latest and greatly-respected application of quartz is the mold in nanoimprint lithography technology (NIL). NIL differs from the traditional lithography in the process of exposure and development, which is replaced by the process that resist on substrate is imprinted by patterned mold. It is a high-throughput technique of saving much process time and cost.
This research utilizes conducting polymer Espacer300 as conducting layer to dissipate charging effect. After E-beam lithography, quartz mold is fabricated by metal evaporation, lift-off, and reactive ion etch. Photo-solidification NIL is accomplished with the surface-treated mold.
This research has completed 100 nm width e-beam lithography, 200nm width metal mask, 500 nm width mold and photo-solidification NIL.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:46:32Z (GMT). No. of bitstreams: 1
ntu-94-R92631009-1.pdf: 5145781 bytes, checksum: 843ac691f6a4371e97b1f4f059189176 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents第一章 前言 1
1-1 研究背景 1
1-2 研究目的 1
第二章 文獻探討 3
2-1 石英的微奈米加工技術 3
2-1-1 石英的晶體結構 3
2-1-2 石英的材料特性 4
2-1-3 石英的微加工技術 5
2-1-4 石英的奈米加工技術 9
2-2 奈米壓印微影技術 12
2-2-1 熱壓型 12
2-2-2 光壓型 12
2-2-3 壓印母模的製作 17
2-2-4 壓印母模的表面處理 22
第三章 設備、材料、技術與方法 26
3-1 實驗設備 26
3-2 實驗材料 29
3-3 技術與方法 30
3-3-1 電子束微影 30
3-3-2 金屬沈積 34
3-3-3 Lift-off 36
第四章 製程步驟及結果 37
4-1製程步驟 37
4-1-1 石英母模之製作 37
4-1-2 以石英母模進行光固化型奈米壓印 38
4-2製程說明與結果 39
4-2-1 電子束微影 39
4-2-2 金屬擋罩之製作 50
4-2-3 反應性離子蝕刻 54
4-2-4 光固化奈米壓印 71
第五章 結論與未來展望 77
參考文獻 78
dc.language.isozh-TW
dc.title石英基材之奈米加工技術及其在壓印上的應用zh_TW
dc.titleNano-machining technique on quartz and its application to nanoimprint lithographyen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施文彬,陳學禮
dc.subject.keyword石英,母模,電子束微影,奈米壓印,光固化型奈米壓印,zh_TW
dc.subject.keywordquartz,mold,e-beam lithography,nanoimprint,photo-solidification NIL,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2005-07-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
5.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved