請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | June-Wey Leu | en |
| dc.contributor.author | 呂俊蔚 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:45:58Z | - |
| dc.date.available | 2005-07-30 | |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-29 | |
| dc.identifier.citation | 1. M. A. McCord and R. F. W. Pease, Appl. Phys. Lett. 50, 569 (1987).
2. C. R. K. Marrian and R. J. Colton, Appl. Phys. Lett. 56, 755 (1990). 3. K. Hironaka, N. Aoki, H. Hori, and S. Yamada, Jpn. J. Appl. Phys. Lett., Part1 36, 3839(1997). 4. C. R. K. Marrian, F. K. Perkins, S. L. Brandow, T. S. Kolosi, E. A. Dobisz, and J. M. Calvert, Appl. Phys. Lett. 64, 390 (1994). 5. L. S. Xu and D. R. Allee, J. Vac. Sci. Technol. B 13, 2837 (1995). 6. M. A. McCord and R. F. W. Pease, J. Vac. Sci. Technol. B 5, 430 (1987). 7. S. W. Park, H. T. Soh, C. F. Quate, S. I. Park, Appl. Phys. Lett. 67, 2415 (1995). 8. L. Tsau, D. Wang, and K. L. Wang, Appl. Phys. Lett. 64, 2133 (1994). 9. M. Ihsii and K. Matsumoto, Jpn. J. Appl. Phys. Lett., Part1 34, 1329(1995). 10. E. S. Snow and P. M. Campbell, Appl. Phys. Lett. 64, 1932 (1994). 11. X. Jin and W. N. Unertl, Appl. Phys. Lett. 61, 675 (1992). 12. L. L. Sohn and R. L. Wellett, Appl. Phys. Lett. 67, 1552 (1995). 13. V. Bouchiat and D. Esteve, Appl. Phys. Lett. 69, 3098 (1996). 14. R. Magno and B. R. Bennett, Appl. Phys. Lett. 70, 1855 (1997). 15. P. M. Bridger, Z. Z. Bandic, E. C. Piquette, and T. C. McGill, J. Vav. Sci. Technol. B 17 , 1750 (1999). 16. R. Chierchia, T. BWttcher, H. Heinke, S. Einfeldt, S. Figge, and D. Hommel, J. Appl. Phys. 93, 8918 (2003). 17. S. W. Lee, H. C. Chen, and L. J. Chen, J. Appl. Phys. 92, 6880 (2002). 18. F. Zenhauserrxa M. Adrian, B. ten Heggeler-Bordier, F. Ardizzoni, and P. Descouts, J. Appl. Phys. 73, 7232 (1993). 19. NT-MDT (The AFM manufacturer) operation manual. 20. Masahiro Imada, Susumu Noda, Alongkarn Chutinan, et al. Appl. Phys. Lett. 75, 316 (1999). 21. Alexei A. Erchak,a) Daniel J. Ripin, et al. Appl. Phys. Lett. 78, 563 (2001). 22. M. Kanskar, P. Paddon, V. Pacradouni, et al. Appl. Phys. Lett. 70, 1438 (1997). 23. P. V. Braun and P. Wiltzius, Nature 402, 603 (1999) 24. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987) 25. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, J. D. Joannopoulos, Science 282, 274 (1998) 26. O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B. 16, 275(1999) 27. E. A. Dobisz, S. L. Brandow, R. Bass, and L. M. Shirey, Appl. Phys. Lett. 74, 26(1999) 28. Alexei A. Erchak, Daniel J. Ripin, Shanhui Fan, et al. Appl. Phys. Lett. 78, 563(2001) 29. M. Kanskar, P. Paddon, V. Pacradouni, et al. Appl. Phys. Lett. 70, 1438(1997) 30. O. Painter, J. Vuckovic, and A. Scherer, J. Opt. Soc. Am. B. 16, 275(1999) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35264 | - |
| dc.description.abstract | We present a nanolithography technique based on an atomic force microscopy (AFM). A thin resist layer on the sample surface is plastically indented by a vibrating tip. Controlling of the vibration amplitude and tip movement enables one to plow a narrow furrow along line segments of arbitrary length and direction. Different lines segments which form a complex pattern can be plowed at a low scan speed. The complex patterns can be transferred to two-dimension photonic crystal by wet chemical etching.
We succeed in fabricating two-dimension photonic crystals of air holes on semiconductors. More interestingly, by a proper design the photoluminescence (PL) intensity of semiconductors with air holes can be enhanced. The interesting phenomenon can be explained by the presence of leaky resonant states created by the coherent scattering from the periodicity of photonic crystal. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:45:58Z (GMT). No. of bitstreams: 1 ntu-94-R91222014-1.pdf: 1186443 bytes, checksum: 54506395748489a0a6a7058949ffb14c (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | content
Abstract………………………………………………………………III List of Figures………………………………………………………IV 1. Introduction……………………………………………………….1 1.1 Introduction………………………………………………………1 1.2 References………………………………………………………………3 2.Background..............................................4 2.1 Atomic Force Microscopy...............................4 2.1.1 Introduction……………………………………………………4 2.1.2 The principle of Atomic Force Microscopy……………..5 2.1.3 General components of Atomic Force Microscopy……….5 2.1.4 References…………………………………………………....7 2.2 Photoluminescence (PL)……………………………………….13 2.2.1 Photoluminescence Spectroscopy………………………….13 2.2.2 Photoluminescence emission……………………………….13 2.3 Photonic Crystals………………………………………………17 2.3.1 Introduction………………………………………………...17 2.3.2 References…………………………………………………….18 3. Experimental Results and Discussion……………………….20 3.1 Introduction…………………………………………………….20 3.2 Design of 2-D Photonic Crystals……………………………20 3.3 Sample Preparation…………………………………………….21 3.4 The procedures of using AFM lithography…………………22 I 3.5 Measuring the optical properties of triangle air hole lattices.................................................22 3.6 Enhancement of μ-PL Intensity of 2D triangle air hole lattices.................................................22 3.7 References……………………………………………………….23 4. Conclusion…………………………………………………………31 List of Figures Fig.2.1 The AFM operation modes: contact mode, semi-contact mode and non-contact mode………………………………………….8 Fig.2.2 Distance dependence of Van der Waals force compared to the typical tip-surface separations in the contact mode, non-contact mode and semi-contact mode…………………………9 Fig.2.3 Schematic of the AFM measurement system……………10 Fig.2.4 The SEM images of Ultrasharp silicon cantilever tip......................................................11 Fig.2.5 Schematic of the scanner control system……………12 Fig.2.6(a) the absorption process of the direct transition...............................................15 Fig.2.6(b) the absorption process of the in direct transition...............................................15 Fig.2.7 PL Setup……………………………………………………………………16 Fig.2.8(a) Triangle lattice structure…………………………19 Fig.2.8(b) Square lattice structure……………………………19 Fig.3.1 triangle air hole lattices…………………………….24 Fig.3.2 the simulation of different spacing a………………25 Fig.3.3 Parameters setting……………………………………….26 Fig.3.4(a) the AFM image of square air hole lattices…….27 | |
| dc.language.iso | en | |
| dc.subject | 螢光光譜 | zh_TW |
| dc.subject | 原子力顯微術 | zh_TW |
| dc.subject | 光子晶體 | zh_TW |
| dc.subject | photonic crystals | en |
| dc.subject | photoluminescences spectra | en |
| dc.subject | AFM lithography | en |
| dc.title | 利用原子力顯微術製作奈米結構及其光學性質之量測 | zh_TW |
| dc.title | Fabrication and optical investigation of nanostructures by Atomic Force Microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張顏暉,黃鶯聲 | |
| dc.subject.keyword | 原子力顯微術,光子晶體,螢光光譜, | zh_TW |
| dc.subject.keyword | AFM lithography,photonic crystals,photoluminescences spectra, | en |
| dc.relation.page | 31 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
