Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35259
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許仁華(J. H. Hsu)
dc.contributor.authorJia-Rui Huangen
dc.contributor.author黃家睿zh_TW
dc.date.accessioned2021-06-13T06:45:48Z-
dc.date.available2005-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-29
dc.identifier.citationReferences
[1] P. M. Tedrow, R. Meservey, Phys. Rev. Lett. 26, 192 (1971)
[2] M. Johnson, R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985)
[3] S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)
[4] Hanle, Z. Phys. 30, 93 (1924)
[5] M. I. D’ykonov, V. I. Perel’, Sov. Phys. JETP 33, 1053 (1971)
[6] G. Dresselhaus, Phys. Rev. 100, 580 (1955)
[7] P. Y. Yu and M. Cardona, Fundamentals of semiconductors, Physics and Materials Properties, 2nd ed. (Springer, New York 1999)
[8] E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)
[9] Yu. A. Bychov, E. I. Rashba, J. Phys. C 17, 6039 (1984)
[10] E. L. Ivchenko, A. Yu. Kaminski, and U. , Phys. Rev. B 54, 5852 (1996)
[11] J. T. Olesberg, W. H. Lau, M. E. , C. Yu, E. Altunkaya, E. Altunkaya, E. M. Shaw, T. C. Hasenberg, and T. F. Boggess, Phys. Rev. B 64, 201301 (R) (2001)
[12] M. Johnson, Science 260, 320 (1993)
[13] J. Nitta, T. Akazaki, H. Takayanigi, Phys. Rev. Lett. 78, 1335 (1997)
[14] P. R. Hammar, B. R. Bennett, M. J. Yang, M. Johnson, Phys. Rev. Lett. 83, 203 (1999)
[15] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, L. W, and Molenkamp, Nature 402, 787 (1999)
[16] A. T. Hanbicki and B. T. Jonker, Appl. Phys. Lett. 80, 1240 (1999)
[17] Jasprit Singh, Semiconductors devices, (McGraw-Hill 1994)
[18] Daniel V. Schroeder, Introduction to Thermal Physics, (Addison-Wesley 2000)
[19] 介觀與低維物理 (粱啟德 老師上課內容)
[20] T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993)
[21] D. , M. Oestreich, W. W. , N. Nestle, and K. Eberl, Appl. Phys. Lett. 73, 1580 (1998)
[22] P. C. van Son, H. van Kempen, and P.Wyder, Phys. Rev. Lett. 58, 2271 (1987)
[23] J. M. Kikkawa and D. D. Awschalon, Nature (Lodon) 397, 139 (1999)
[24] G. Schmidt, D. Ferrand, and L. W. Molenkamp, Phys. Rev. B 62, R4790 (2000)
[25] V. Ya. Kravchenko and E. I. Rashba, Sov. Phys. JETP 29, 918 (1969)
[26] G. A. Prinz, Science 282, 1660 (1998)
[27] E. I. Rashba, Phys. Rev. B 62, R16267 (2000)
[28] W. van Roosbroeck, Bell. Syst. Tech. J. 29, 560 (1950); Phys. Rev. 91, 282 (1953)
[29] J. R. Haynes and W. Shockley, Phys. Rev. 81, 835 (1951)
[30] See, e. g., , R. A. Smith, Semiconductors,
(Cambridge University Press, New York, 1978)
[31] J. M. Kikkawa and D. D. Awschalon, Phys. Rev. Lett. 80, 4313 (1998)
[32] M. E. and J. M. Byers, Phys. Rev. Lett. 84, 4220 (2000)
[33] Z. G. Yu and M. E. , Phys. Rev. B 66, 201202 (2002)
[34] Shun Lien Chung, Physics of Optoelectronic Devices, (Wiley 1995)
[35] Jen Als-Nielsen and Des McMorrow, Elements of Modern X-Ray Physics,
(Wiley 2001)
[36] Frank L. Pedrotti and Leno S. Pedrotti, Introduction to Optics, (Prentice-Hall 1992)
[37] L. G. Parrat, Phys. Rev. 95, 359 (1954)
[38] T. Sugaya and M. Kawabe, Jpn. J. Appl. Phys. 30, L402 (1991)
[39] M. Yamada, Y. Ide, and K. Tone, Jpn. J. Appl. Phys. 31, L1157 (1992)
[40] E. J. Petit and F. Houzay, J. Vac. Sci. Technol. B 12, 547 (1994)
[41] Fengping Wang, Ping Wu, Hong Qiu, Liqing Pan, Huangping Liu, Yue Tian, and
Sheng Luo, Journal of University of Science and Technology Beijing 11, 30 (2004)
[42] D. D. Awschalon, D. Loss, and N. Samarth (Eds.), Semiconductor Spintronics and
Quantum Computation, (Springer-Verlag 2002)
[43] M. I. D’ykonov and V. I. Perel’F. Meier and B. P. Zakharchenys in Optical Orientation, edited by F. Meier and B. P Zakharchenya
(North-Holland, Amsterdam 1984)
[44] Michael Ziese and Martin J. Thornton, Spin Electronics, (Springer 2001)
[45] B. D. Cullity, Introduction to Magnetic Materials, (Addison-Wesley 1972)
[46] F. G. Monzon, M. Johnson, M. L. Roukes, Appl. Phys. Lett. 71, 3087 (1997)
[47] W. R. Runyan and T. J. Shaffner, Semiconductor Measurements and Instrumentation,
(McGraw-Hill 1998)
[48] H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H. P. , K. H. Ploog, Phys. Rev. Lett. 87, 016601 (2001)
[49] H. Katsuraki, J. Phys. Soc. Jpn. 19, 1988 (1964)
[50] J. J. Krebs, B. T. Jonker, and G. A. Prinz, J. Appl. Phys. 61, 2596 (1987)
[51] A. Hirohata, Y. B. Xu, and J. A. C. Bland, J. Appl. Phys. 91, 7308 (2002)
[52] J. Rudolph, D. , H. M. Gibbs, G. Khitrova, and M. Oestreich, Appl. Phys. Lett. 82, 4516 (2003)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35259-
dc.description.abstractMany researchers have been looking for the way to fabricate new devices by integrating metal-based electronics with present semiconductor technology. Since Datta et al. [3] proposed the idea of ‘spin-based’ field-effect transistor (Spin-FET) in 1990, much of effort was exhausted in the realization of spin-FET because it adds additional spin-degree of freedom in conventional ‘charge-based’ field-effect transistor. One might wonder how Spin-FET devices can work at all instead of a large conductivity mismatch between ferromagnetic metal and semiconductor. One solution is to employ a tunnel barrier to inject a spin-polarized current. However, no report has addressed a successful Spin-FET device yet.
This study is to follow spin-FET dream and, at the very beginning, we focus our research on design and fabrication of a spin injection source using ferromagnetic metal with tunnel barrier. For integration of ferromagnetic metal and semiconductor, surface oxides on GaAs substrate were removed effectively by using atomic hydrogen. To measure spin injection efficiency for the injection source, we also designed and calculated quantum well (QW) structure for detection of spin-polarized current. However, there is no available measurement apparatus in NTU yet, and so we put much of our effort on the study of design and fabrication of a theoretically high spin injection source.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:45:48Z (GMT). No. of bitstreams: 1
ntu-94-P92222002-1.pdf: 1665023 bytes, checksum: 3ff2cfde678856a38846a63b1b7cf033 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents
1. Introduction 7
1.1 Why do we study room-temperature spin injection? 7
1.2 Spin Injection and Detection: Early Experiments 10
1.2.1 Spin Polarized Tunneling: “First Experiments” (1971) 10
1.2.2 Spin Injection in Clean Bulk Metals (1986) 11
1.2.3 Datta-Das Spin-FET Model (1990) 12
1.3 Spin Dynamics in Semiconductor (SC) 15
1.3.1 Depolarization due to Oblique Magnetic Field (Oblique Handle Effect) 15
1.3.2 Spin Precession due to Bulk Inversion Asymmetry (Dresselhaus Effect) 17
1.3.3 Spin Precession due to Structural Inversion Asymmetry (Rashba Effect) 19
1.3.4 Spin Decoherence due to Native Interface Asymmetry (NIA) 20
1.4 Spin Injection and Detection: After Datta and Das 23
1.4.1 Spin Injection in Impure Metal Films (1993) 23
1.4.2 Gate Control of Spin-Orbit Interaction in Inverted MODFET (1997) 24
1.4.3 Spin Injection at Ferromagnetic Metal (FM)-SC Interface (1999) 25
1.4.4 Spin Injection and Detection in DMS Spin-LED with QW (1999) 26
1.4.5 Spin Injection and Detection in FM Spin-LED with QW (2000-2002) 29
1.5 Our Studies in Spin Injection 33
2. Theory 35
2.1 Theory of Carrier Transport in SC 35
2.2.1 Concept of Chemical Potential 35
2.2.2 Boltzmann Transport Equation 36
2.1.1 Carrier Transport by Diffusion Only 41
2.1.2 Transport by Drift and Diffusion 43
2.1.3 Einstein’s Relation 44
2.2 Fundamentals of Spin-Polarized Transport in FM and SC 49
2.3 Conductivity Mismatch in Spin Injection 52
2.4 Spin Injection Using Tunnel Contacts 60
2.5 Drift-Diffusion Equations for Spin in SC 66
2.6 Electric Field Dependence in Spin Diffusion 71
2.7 Standard Symmetric QW in Spin Detection 77
3. Experiments 86
3.1 Sample Preparation 86
3.1.1 Epi-wafer Prepared by Molecular Beam Epitaxy 86
3.1.2 Oxide Removal Process Using Atomic Hydrogen 88
3.1.3 Thin-film Deposition by DC Sputtering System 91
3.2 Sample Characterization 96
3.2.1 Measurement of Film Thickness by AFM 96
3.2.2 Fabrication and Characterization of Cross-section TEM Samples 98
3.2.3 Measurement of Interface Roughness by XRR 103
3.2.4 Measurement of X-ray Diffraction by XRD 108
3.2.5 Measurement of Magnetic Properties by VSM 109
3.2.6 Measurement of Photoluminescence by PL 112
3.2.7 Measurement of Junction Resistance by MTJ pattern 115
4. Results and Discussion 116
4.1 Characterization of Oxides Removal Process (for integration) 116
4.2 Investigation of Interface Sharpness (To reduce spin-flipping) 120
4.3 Crystallinity of Ni80Fe20(Py) films on n-Si(100) (for spin polarization) 126
4.4 Magnetic properties of Py films on n-GaAs(100) (for spin injection) 128
4.5 Characterization of Al0.3Ga0.7As/GaAs QW (for spin detection) 134
4.6 Characterization of AlOx Quality (for tunnel barrier) 137
5. Summary 139
References 143
Acknowledgements 147
dc.language.isoen
dc.titleStudy of Room-temperature Spin Injection in Ni80Fe20/AlOx/GaAs-based QW (MIS Spin-LED) Systemen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張慶瑞(C. R. Chang),張顏暉(Y. H Chang),林浩雄(H. H. Lin),盧志權(C. K. Lo)
dc.subject.keyword自旋射入,zh_TW
dc.subject.keywordSpin Injection,en
dc.relation.page148
dc.rights.note有償授權
dc.date.accepted2005-07-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved