請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35206完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱麗珠 | |
| dc.contributor.author | Jen-Kun Cheng | en |
| dc.contributor.author | 鄭仁坤 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:44:02Z | - |
| dc.date.available | 2007-08-04 | |
| dc.date.copyright | 2005-08-04 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-29 | |
| dc.identifier.citation | REFERENCES
Abbott FV, Franklin KB, Westbrook RF. The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain 1995;60(1):91-102. Abram SE. Necessity for an animal model of postoperative pain. Anesthesiology 1997;86(5):1015-1017. Alden KJ, Garcia J. Dissociation of charge movement from calcium release and calcium current in skeletal myotubes by gabapentin. Am J Physiol Cell Physiol 2002;283(3):C941-949. Allen TG, Brown DA. Modulation of the excitability of cholinergic basal forebrain neurones by KATP channels. J Physiol 2004;554(Pt 2):353-370. Amann R, Maggi CA. Ruthenium red as a capsaicin antagonist. Life Sci 1991;49(12):849-856. Andrews N, Loomis S, Blake R, Ferrigan L, Singh L, McKnight AT. Effect of gabapentin-like compounds on development and maintenance of morphine-induced conditioned place preference. Psychopharmacology (Berl) 2001;157(4):381-387. Atanassoff PG, Hartmannsgruber MW, Thrasher J, Wermeling D, Longton W, Gaeta R, Singh T, Mayo M, McGuire D, Luther RR. Ziconotide, a new N-type calcium channel blocker, administered intrathecally for acute postoperative pain. Reg Anesth Pain Med 2000;25(3):274-278. Backonja M, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M, LaMoreaux L, Garofalo E. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. Jama 1998;280(21):1831-1836. Bao J, Li JJ, Perl ER. Differences in Ca2+ channels governing generation of miniature and evoked excitatory synaptic currents in spinal laminae I and II. J Neurosci 1998;18(21):8740-8750. Begon S, Pickering G, Eschalier A, Mazur A, Rayssiguier Y, Dubray C. Role of spinal NMDA receptors, protein kinase C and nitric oxide synthase in the hyperalgesia induced by magnesium deficiency in rats. Br J Pharmacol 2001;134(6):1227-1236. Belliotti TR, Capiris T, Ekhato IV, Kinsora JJ, Field MJ, Heffner TG, Meltzer LT, Schwarz JB, Taylor CP, Thorpe AJ, Vartanian MG, Wise LD, Zhi-Su T, Weber ML, Wustrow DJ. Structure-activity relationships of pregabalin and analogues that target the a2d protein. J Med Chem 2005;48(7):2294-2307. Bennett MI. Gabapentin significantly improves analgesia in people receiving opioids for neuropathic cancer pain. Cancer Treat Rev 2005;31(1):58-62. Berry JD, Petersen KL. A single dose of gabapentin reduces acute pain and allodynia in patients with herpes zoster. Neurology 2005. Bertrand S, Morin F, Lacaille JC. Different actions of gabapentin and baclofen in hippocampus from weaver mice. Hippocampus 2003a;13(4):525-528. Bertrand S, Ng GY, Purisai MG, Wolfe SE, Severidt MW, Nouel D, Robitaille R, Low MJ, O'Neill GP, Metters K, Lacaille JC, Chronwall BM, Morris SJ. The anticonvulsant, antihyperalgesic agent gabapentin is an agonist at brain g-aminobutyric acid type B receptors negatively coupled to voltage-dependent calcium channels. J Pharmacol Exp Ther 2001;298(1):15-24. Bertrand S, Nouel D, Morin F, Nagy F, Lacaille JC. Gabapentin actions on Kir3 currents and N-type Ca2+ channels via GABAB receptors in hippocampal pyramidal cells. Synapse 2003b;50(2):95-109. Block F. [Gabapentin for therapy of neuropathic pain]. Schmerz 2001;15(4):280-288. Bonhaus DW, Loo C, Secchi R, Hedley L, Cao Z, Ly J, Loughhead D, Gogas K. Effects of the GABAB receptor antagonist CGP 55845 on the anticonvulsant and anxiolytic actions of gabapentin. Pharmacologist 2002;44:A100. Bonnefont J, Alloui A, Chapuy E, Clottes E, Eschalier A. Orally administered paracetamol does not act locally in the rat formalin test: evidence for a supraspinal, serotonin-dependent antinociceptive mechanism. Anesthesiology 2003;99(4):976-981. Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, Pages A, McRory J, Snutch TP, Eschalier A, Nargeot J. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. Embo J 2005;24(2):315-324. Bowersox SS, Gadbois T, Singh T, Pettus M, Wang YX, Luther RR. Selective N-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain. J Pharmacol Exp Ther 1996;279(3):1243-1249. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acidB receptors: structure and function. Pharmacol Rev 2002;54(2):247-264. Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain 1996;64(3):493-501. Bryans JS, Davies N, Gee NS, Dissanayake VU, Ratcliffe GS, Horwell DC, Kneen CO, Morrell AI, Oles RJ, O'Toole JC, Perkins GM, Singh L, Suman-Chauhan N, O'Neill JA. Identification of novel ligands for the gabapentin binding site on the a2d subunit of a calcium channel and their evaluation as anticonvulsant agents. J Med Chem 1998;41(11):1838-1845. Burgos-Lepley CE, Thompson LR, Kneen CO, Osborne SA, Bryans JS, Capiris T, Suman-Chauhan N, Dooley DJ, Donovan CM, Field MJ, Vartanian MG, Kinsora JJ, Lotarski SM, El-Kattan A, Walters K, Cherukury M, Taylor CP, Wustrow DJ, Schwarz JB. Carboxylate bioisosteres of gabapentin. Bioorg Med Chem Lett 2005. Canadillas-Hidalgo FM. [The safety and tolerability profile of gabapentin in optimal doses]. Rev Neurol 2004;39(4):371-380. Capponi AM, Rossier MF, Davies E, Vallotton MB. Calcium stimulates steroidogenesis in permeabilized bovine adrenal cortical cells. J Biol Chem 1988;263(31):16113-16117. Carbone E, Lux HD, Carabelli V, Aicardi G, Zucker H. Ca2+ and Na+ permeability of high-threshold Ca2+ channels and their voltage-dependent block by Mg2+ ions in chick sensory neurones. J Physiol 1997;504 (Pt 1):1-15. Carlton SM, Zhou S. Attenuation of formalin-induced nociceptive behaviors following local peripheral injection of gabapentin. Pain 1998;76(1-2):201-207. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994;53(1):55-63. Chaplan SR, Guo HQ, Lee DH, Luo L, Liu C, Kuei C, Velumian AA, Butler MP, Brown SM, Dubin AE. Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J Neurosci 2003;23(4):1169-1178. Chaplan SR, Pogrel JW, Yaksh TL. Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia. J Pharmacol Exp Ther 1994;269(3):1117-1123. Chemin J, Nargeot J, Lory P. Neuronal T-type a1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell line. J Neurosci 2002;22(16):6856-6862. Chen JJ, Swope DM. Essential tremor: diagnosis and treatment. Pharmacotherapy 2003;23(9):1105-1122. Chen SR, Eisenach JC, McCaslin PP, Pan HL. Synergistic effect between intrathecal non-NMDA antagonist and gabapentin on allodynia induced by spinal nerve ligation in rats. Anesthesiology 2000;92(2):500-506. Cheng JK, Pan HL, Eisenach JC. Antiallodynic effect of intrathecal gabapentin and its interaction with clonidine in a rat model of postoperative pain. Anesthesiology 2000;92(4):1126-1131. Chizh BA, Scheede M, Schlutz H. Antinociception and (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid antagonism by gabapentin in the rat spinal cord in vivo. Naunyn Schmiedebergs Arch Pharmacol 2000;362(2):197-200. Cibulsky SM, Sather WA. Block by ruthenium red of cloned neuronal voltage-gated calcium channels. J Pharmacol Exp Ther 1999;289(3):1447-1453. Cilio MR, Bolanos AR, Liu Z, Schmid R, Yang Y, Stafstrom CE, Mikati MA, Holmes GL. Anticonvulsant action and long-term effects of gabapentin in the immature brain. Neuropharmacology 2001;40(1):139-147. Coderre TJ, Kumar N, Lefebvre CD, Yu JS. Evidence that gabapentin reduces neuropathic pain by inhibiting the spinal release of glutamate. J Neurochem 2005;[Epub ahead of print]. Coderre TJ, Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 1992;12(9):3665-3670. Coderre TJ, Yashpal K. Intracellular messengers contributing to persistent nociception and hyperalgesia induced by L-glutamate and substance P in the rat formalin pain model. Eur J Neurosci 1994;6(8):1328-1334. Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989;25(6):582-593. Cunningham MO, Woodhall GL, Thompson SE, Dooley DJ, Jones RS. Dual effects of gabapentin and pregabalin on glutamate release at rat entorhinal synapses in vitro. Eur J Neurosci 2004;20(6):1566-1576. Danysz W, Kozela E, Parsons CG, Sladek M, Bauer T, Popik P. Peripherally acting NMDA receptor/glycineB site receptor antagonists inhibit morphine tolerance. Neuropharmacology 2005;48(3):360-371. Dickenson AH, Sullivan AF. Subcutaneous formalin-induced activity of dorsal horn neurones in the rat: differential response to an intrathecal opiate administered pre or post formalin. Pain 1987;30(3):349-360. Dierking G, Duedahl TH, Rasmussen ML, Fomsgaard JS, Moiniche S, Romsing J, Dahl JB. Effects of gabapentin on postoperative morphine consumption and pain after abdominal hysterectomy: a randomized, double-blind trial. Acta Anaesthesiol Scand 2004;48(3):322-327. Dissanayake VU, Gee NS, Brown JP, Woodruff GN. Spermine modulation of specific [3H]-gabapentin binding to the detergent-solubilized porcine cerebral cortex a2d calcium channel subunit. Br J Pharmacol 1997;120(5):833-840. Dixit RK, Bhargava VK. Neurotransmitter mechanisms in gabapentin antinociception. Pharmacology 2002;65(4):198-203. Dogrul A, Gardell LR, Ossipov MH, Tulunay FC, Lai J, Porreca F. Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 2003;105(1-2):159-168. Dogrul A, Yesilyurt O. Effects of intrathecally administered aminoglycoside antibiotics, calcium-channel blockers, nickel and calcium on acetic acid-induced writhing test in mice. Gen Pharmacol 1998;30(4):613-616. Dogrul A, Yesilyurt O, Isimer A, Guzeldemir ME. L-type and T-type calcium channel blockade potentiate the analgesic effects of morphine and selective m opioid agonist, but not to selective delta and k agonist at the level of the spinal cord in mice. Pain 2001;93(1):61-68. Dooley DJ, Donovan CM, Meder WP, Whetzel SZ. Preferential action of gabapentin and pregabalin at P/Q-type voltage-sensitive calcium channels: inhibition of K+-evoked [3H]-norepinephrine release from rat neocortical slices. Synapse 2002;45(3):171-190. Drouin H, Hermann A. Intracellular action of spermine on neuronal Ca2+ and K+ currents. Eur J Neurosci 1994;6(3):412-419. Errante LD, Petroff OA. Acute effects of gabapentin and pregabalin on rat forebrain cellular GABA, glutamate, and glutamine concentrations. Seizure 2003;12(5):300-306. Fehrenbacher JC, Taylor CP, Vasko MR. Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain 2003;105(1-2):133-141. Felix R. Voltage-dependent Ca2+ channel a2d auxiliary subunit: structure, function and regulation. Receptors Channels 1999;6(5):351-362. Field MJ, Holloman EF, McCleary S, Hughes J, Singh L. Evaluation of gabapentin and S-(+)-3-isobutylgaba in a rat model of postoperative pain. J Pharmacol Exp Ther 1997a;282(3):1242-1246. Field MJ, Hughes J, Singh L. Further evidence for the role of the a2d subunit of voltage dependent calcium channels in models of neuropathic pain. Br J Pharmacol 2000;131(2):282-286. Field MJ, McCleary S, Hughes J, Singh L. Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain 1999;80(1-2):391-398. Field MJ, Oles RJ, Lewis AS, McCleary S, Hughes J, Singh L. Gabapentin (neurontin) and S-(+)-3-isobutylgaba represent a novel class of selective antihyperalgesic agents. Br J Pharmacol 1997b;121(8):1513-1522. Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 2004;109(1-2):150-161. Freiman TM, Kukolja J, Heinemeyer J, Eckhardt K, Aranda H, Rominger A, Dooley DJ, Zentner J, Feuerstein TJ. Modulation of K+-evoked [3H]-noradrenaline release from rat and human brain slices by gabapentin: involvement of KATP channels. Naunyn Schmiedebergs Arch Pharmacol 2001;363(5):537-542. Gazulla J, Errea JM, Benavente I, Tordesillas CJ. Treatment of ataxia in cortical cerebellar atrophy with the GABAergic drug gabapentin. A preliminary study. Eur Neurol 2004;52(1):7-11. Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the a2d subunit of a calcium channel. J Biol Chem 1996;271(10):5768-5776. Gidal BE, Radulovic LL, Kruger S, Rutecki P, Pitterle M, Bockbrader HN. Inter- and intra-subject variability in gabapentin absorption and absolute bioavailability. Epilepsy Res 2000;40(2-3):123-127. Gilad GM, Gilad VH, Wyatt RJ. Polyamines modulate the binding of GABAA-benzodiazepine receptor ligands in membranes from the rat forebrain. Neuropharmacology 1992;31(9):895-898. Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL. Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med 2005;352(13):1324-1334. Gong HC, Hang J, Kohler W, Li L, Su TZ. Tissue-specific expression and gabapentin-binding properties of calcium channel a2d subunit subtypes. J Membr Biol 2001;184(1):35-43. Gu Y, Huang LY. Gabapentin actions on N-methyl-D-aspartate receptor channels are protein kinase C-dependent. Pain 2001;93(1):85-92. Gu Y, Huang LY. Gabapentin potentiates N-methyl-D-aspartate receptor mediated currents in rat GABAergic dorsal horn neurons. Neurosci Lett 2002;324(3):177-180. Hamalainen MM, Gebhart GF, Brennan TJ. Acute effect of an incision on mechanosensitive afferents in the plantar rat hindpaw. J Neurophysiol 2002;87(2):712-720. Hamm J, Alessi DR, Biondi RM. Bi-functional, substrate mimicking RNA inhibits MSK1-mediated cAMP-response element-binding protein phosphorylation and reveals magnesium ion-dependent conformational changes of the kinase. J Biol Chem 2002;277(48):45793-45802. Hansen C, Gilron I, Hong M. The effects of intrathecal gabapentin on spinal morphine tolerance in the rat tail-flick and paw pressure tests. Anesth Analg 2004;99(4):1180-1184, table of contents. Hara K, Saito Y, Kirihara Y, Sakura S, Kosaka Y. Antinociceptive effects of intrathecal L-type calcium channel blockers on visceral and somatic stimuli in the rat. Anesth Analg 1998;87(2):382-387. Heinke B, Balzer E, Sandkuhler J. Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons. Eur J Neurosci 2004;19(1):103-111. Honmou O, Oyelese AA, Kocsis JD. The anticonvulsant gabapentin enhances promoted release of GABA in hippocampus: a field potential analysis. Brain Res 1995;692(1-2):273-277. Horvath G, Brodacz B, Holzer-Petsche U. Role of calcium channels in the spinal transmission of nociceptive information from the mesentery. Pain 2001;93(1):35-41. Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nat Rev Neurosci 2001;2(2):83-91. Hwang JH, Yaksh TL. The effect of spinal GABA receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain 1997a;70(1):15-22. Hwang JH, Yaksh TL. Effect of subarachnoid gabapentin on tactile-evoked allodynia in a surgically induced neuropathic pain model in the rat. Reg Anesth 1997b;22(3):249-256. Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 2003;299(5610):1237-1240. Jensen AA, Mosbacher J, Elg S, Lingenhoehl K, Lohmann T, Johansen TN, Abrahamsen B, Mattsson JP, Lehmann A, Bettler B, Brauner-Osborne H. The anticonvulsant gabapentin (neurontin) does not act through g-aminobutyric acid-B receptors. Mol Pharmacol 2002;61(6):1377-1384. Jun JH, Yaksh TL. The effect of intrathecal gabapentin and 3-isobutyl gamma-aminobutyric acid on the hyperalgesia observed after thermal injury in the rat. Anesth Analg 1998;86(2):348-354. Kang YM, Zhang ZH, Yang SW, Qiao JT, Dafny N. ATP-sensitive K+ channels are involved in the mediation of intrathecal norepinephrine- or morphine-induced antinociception at the spinal level: a study using EMG planimetry of flexor reflex in rats. Brain Res Bull 1998;45(3):269-273. Kato A, Ohkubo T, Kitamura K. Algogen-specific pain processing in mouse spinal cord: differential involvement of voltage-dependent Ca2+ channels in synaptic transmission. Br J Pharmacol 2002;135(5):1336-1342. Khan RB, Hunt DL, Thompson SJ. Gabapentin to control seizures in children undergoing cancer treatment. J Child Neurol 2004;19(2):97-101. King TE, Cheng J, Wang S, Barr GA. Maturation of NK1 receptor involvement in the nociceptive response to formalin. Synapse 2000;36(4):254-266. Kuner T, Schoepfer R. Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J Neurosci 1996;16(11):3549-3558. Kuzniecky R, Ho S, Pan J, Martin R, Gilliam F, Faught E, Hetherington H. Modulation of cerebral GABA by topiramate, lamotrigine, and gabapentin in healthy adults. Neurology 2002;58(3):368-372. Lado FA, Sperber EF, Moshe SL. Anticonvulsant efficacy of gabapentin on kindling in the immature brain. Epilepsia 2001;42(4):458-463. Lanneau C, Green A, Hirst WD, Wise A, Brown JT, Donnier E, Charles KJ, Wood M, Davies CH, Pangalos MN. Gabapentin is not a GABAB receptor agonist. Neuropharmacology 2001;41(8):965-975. Lee JH, Gomora JC, Cribbs LL, Perez-Reyes E. Nickel block of three cloned T-type calcium channels: low concentrations selectively block a1H. Biophys J 1999;77(6):3034-3042. Li CY, Song YH, Higuera ES, Luo ZD. Spinal dorsal horn calcium channel a2d-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J Neurosci 2004;24(39):8494-8499. Liao YJ, Jan YN, Jan LY. Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J Neurosci 1996;16(22):7137-7150. Liu X, Sandkuhler J. Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors. J Neurophysiol 1997;78(4):1973-1982. Liu XG, Sandkuhler J. Long-term potentiation of C-fiber-evoked potentials in the rat spinal dorsal horn is prevented by spinal N-methyl-D-aspartic acid receptor blockage. Neurosci Lett 1995;191(1-2):43-46. Lohmann AB, Welch SP. ATP-gated K+ channel openers enhance opioid antinociception: indirect evidence for the release of endogenous opioid peptides. Eur J Pharmacol 1999;385(2-3):119-127. LoPachin RM, Rudy TA, Yaksh TL. An improved method for chronic catheterization of the rat spinal subarachnoid space. Physiol Behav 1981;27(3):559-561. Loprinzi L, Barton DL, Sloan JA, Zahasky KM, Smith de AR, Pruthi S, Novotny PJ, Perez EA, Christensen BJ. Pilot evaluation of gabapentin for treating hot flashes. Mayo Clin Proc 2002;77(11):1159-1163. Luo ZD, Calcutt NA, Higuera ES, Valder CR, Song YH, Svensson CI, Myers RR. Injury type-specific calcium channel a2d-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 2002;303(3):1199-1205. Luo ZD, Chaplan SR, Higuera ES, Sorkin LS, Stauderman KA, Williams ME, Yaksh TL. Upregulation of dorsal root ganglion a2d calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci 2001;21(6):1868-1875. Magnus L. Nonepileptic uses of gabapentin. Epilepsia 1999;40 (Suppl 6):S66-72; discussion S73-64. Malan TP, Mata HP, Porreca F. Spinal GABAA and GABAB receptor pharmacology in a rat model of neuropathic pain. Anesthesiology 2002;96(5):1161-1167. Malmberg AB, Yaksh TL. Voltage-sensitive calcium channels in spinal nociceptive processing: blockade of N- and P-type channels inhibits formalin-induced nociception. J Neurosci 1994;14(8):4882-4890. Maneuf YP, Hughes J, McKnight AT. Gabapentin inhibits the substance P-facilitated K+-evoked release of [3H]glutamate from rat caudial trigeminal nucleus slices. Pain 2001;93(2):191-196. Maneuf YP, McKnight AT. Block by gabapentin of the facilitation of glutamate release from rat trigeminal nucleus following activation of protein kinase C or adenylyl cyclase. Br J Pharmacol 2001;134(2):237-240. Marais E, Klugbauer N, Hofmann F. Calcium channel a2d subunits-structure and gabapentin binding. Mol Pharmacol 2001;59(5):1243-1248. Matthews EA, Dickenson AH. Effects of ethosuximide, a T-type Ca2+ channel blocker, on dorsal horn neuronal responses in rats. Eur J Pharmacol 2001;415(2-3):141-149. McCall WD, Tanner KD, Levine JD. Formalin induces biphasic activity in C-fibers in the rat. Neurosci Lett 1996;208(1):45-48. McCallum JB, Kwok WM, Mynlieff M, Bosnjak ZJ, Hogan QH. Loss of T-type calcium current in sensory neurons of rats with neuropathic pain. Anesthesiology 2003;98(1):209-216. Mellick GA, Mellicy LB, Mellick LB. Gabapentin in the management of reflex sympathetic dystrophy. J Pain Symptom Manage 1995;10(4):265-266. Menigaux C, Adam F, Guignard B, Sessler DI, Chauvin M. Preoperative gabapentin decreases anxiety and improves early functional recovery from knee surgery. Anesth Analg 2005;100(5):1394-1399, table of contents. Michels G, Matthes J, Handrock R, Kuchinke U, Groner F, Cribbs LL, Pereverzev A, Schneider T, Perez-Reyes E, Herzig S. Single-channel pharmacology of mibefradil in human native T-type and recombinant Cav3.2 calcium channels. Mol Pharmacol 2002;61(3):682-694. Mixcoatl-Zecuatl T, Medina-Santillan R, Reyes-Garcia G, Vidal-Cantu GC, Granados-Soto V. Effect of K+ channel modulators on the antiallodynic effect of gabapentin. Eur J Pharmacol 2004;484(2-3):201-208. Moore KA, Baba H, Woolf CJ. Gabapentin-- actions on adult superficial dorsal horn neurons. Neuropharmacology 2002;43(7):1077-1081. Moretti R, Torre P, Antonello RM, Ukmar M, Cazzato G, Bava A. Gabapentin as a drug therapy of intractable hiccup because of vascular lesion: a three-year follow up. Neurologist 2004;10(2):102-106. Nemeroff CB. The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacol Bull 2003;37(4):133-146. Ng GY, Bertrand S, Sullivan R, Ethier N, Wang J, Yergey J, Belley M, Trimble L, Bateman K, Alder L, Smith A, McKernan R, Metters K, O'Neill GP, Lacaille JC, Hebert TE. g-aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant gabapentin action. Mol Pharmacol 2001;59(1):144-152. Nozaki-Taguchi N, Yaksh TL. Pharmacology of spinal glutamatergic receptors in post-thermal injury-evoked tactile allodynia and thermal hyperalgesia. Anesthesiology 2002;96(3):617-626. O'Farrell M, Ziogas J, Marley PD. Effects of N- and L-type calcium channel antagonists and (+/-)-Bay K8644 on nerve-induced catecholamine secretion from bovine perfused adrenal glands. Br J Pharmacol 1997;121(3):381-388. Ohkubo T, Shibata M, Takahashi H. The analgesia induced by intrathecal injection of ruthenium red. Pain 1993;54(2):219-221. Oka M, Itoh Y, Wada M, Yamamoto A, Fujita T. Gabapentin blocks L-type and P/Q-type Ca2+ channels involved in depolarization-stimulated nitric oxide synthase activity in primary cultures of neurons from mouse cerebral cortex. Pharm Res 2003a;20(6):897-899. Oka M, Itoh Y, Wada M, Yamamoto A, Fujita T. A comparison of Ca2+ channel blocking mode between gabapentin and verapamil: implication for protection against hypoxic injury in rat cerebrocortical slices. Br J Pharmacol 2003b;139(2):435-443. Parker DA, Ong J, Marino V, Kerr DI. Gabapentin activates presynaptic GABAB heteroreceptors in rat cortical slices. Eur J Pharmacol 2004;495(2-3):137-143. Partridge BJ, Chaplan SR, Sakamoto E, Yaksh TL. Characterization of the effects of gabapentin and 3-isobutyl-gamma-aminobutyric acid on substance P-induced thermal hyperalgesia. Anesthesiology 1998;88(1):196-205. Patel S, Naeem S, Kesingland A, Froestl W, Capogna M, Urban L, Fox A. The effects of GABAB agonists and gabapentin on mechanical hyperalgesia in models of neuropathic and inflammatory pain in the rat. Pain 2001;90(3):217-226. Paul IA, Kuypers G, Youdim M, Skolnick P. Polyamines non-competitively inhibit [3H]3-PPP binding to s receptors. Eur J Pharmacol 1990;184(1):203-204. Penn RD, Paice JA. Adverse effects associated with the intrathecal administration of ziconotide. Pain 2000;85(1-2):291-296. Perez-Reyes E, Lee JH, Cribbs LL. Molecular characterization of two members of the T-type calcium channel family. Ann N Y Acad Sci 1999;868:131-143. Petroff OA, Rothman DL, Behar KL, Lamoureux D, Mattson RH. The effect of gabapentin on brain g-aminobutyric acid in patients with epilepsy. Ann Neurol 1996;39(1):95-99. Pfeffer G, Chouinard G, Margolese HC. Gabapentin in the treatment of antipsychotic-induced akathisia in schizophrenia. Int Clin Psychopharmacol 2005;20(3):179-181. Pollack MH, Matthews J, Scott EL. Gabapentin as a potential treatment for anxiety disorders. Am J Psychiatry 1998;155(7):992-993. Pullan LM, Keith RA, LaMonte D, Stumpo RJ, Salama AI. The polyamine spermine affects omega-conotoxin binding and function at N-type voltage-sensitive calcium channels. J Auton Pharmacol 1990;10(4):213-219. Qin N, Yagel S, Momplaisir ML, Codd EE, D'Andrea MR. Molecular cloning and characterization of the human voltage-gated calcium channel a2d-4 subunit. Mol Pharmacol 2002;62(3):485-496. Redwine KE, Trujillo KA. Effects of NMDA receptor antagonists on acute mu-opioid analgesia in the rat. Pharmacol Biochem Behav 2003;76(2):361-372. Richerson GB, Wu Y. Role of the GABA transporter in epilepsy. Adv Exp Med Biol 2004;548:76-91. Rock DM, Macdonald RL. The polyamine spermine has multiple actions on N-methyl-D-aspartate receptor single-channel currents in cultured cortical neurons. Mol Pharmacol 1992;41(1):83-88. Rosner H, Rubin L, Kestenbaum A. Gabapentin adjunctive therapy in neuropathic pain states. Clin J Pain 1996;12(1):56-58. Rowan AJ, Ramsay RE, Collins JF, Pryor F, Boardman KD, Uthman BM, Spitz M, Frederick T, Towne A, Carter GS, Marks W, Felicetta J, Tomyanovich ML. New onset geriatric epilepsy: a randomized study of gabapentin, lamotrigine, and carbamazepine. Neurology 2005;64(11):1868-1873. Rowbotham M, Harden N, Stacey B, Bernstein P, Magnus-Miller L. Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. Jama 1998;280(21):1837-1842. Sakurada T, Katsumata K, Yogo H, Tan-No K, Sakurada S, Ohba M, Kisara K. The neurokinin-1 receptor antagonist, sendide, exhibits antinociceptive activity in the formalin test. Pain 1995;60(2):175-180. Sandkuhler J, Liu X. Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci 1998;10(7):2476-2480. Sarantopoulos C, McCallum B, Sapunar D, Kwok WM, Hogan Q. ATP-sensitive potassium channels in rat primary afferent neurons: the effect of neuropathic injury and gabapentin. Neurosci Lett 2003;343(3):185-189. Sawynok J, Reid A. Antinociception by tricyclic antidepressants in the rat formalin test: differential effects on different behaviours following systemic and spinal administration. Pain 2001;93(1):51-59. Schoemaker H. Polyamines allosterically modulate [3H]nitrendipine binding to the voltage-sensitive calcium channel in rat brain. Eur J Pharmacol 1992;225(2):167-169. Schwarz JB, Gibbons SE, Graham SR, Colbry NL, Guzzo PR, Le VD, Vartanian MG, Kinsora JJ, Lotarski SM, Li Z, Dickerson MR, Su TZ, Weber ML, El-Kattan A, Thorpe AJ, Donevan SD, Taylor CP, Wustrow DJ editors|. Title|, Vol. Volume|. City|: Publisher|, Year|. Sheen K, Chung JM. Signs of neuropathic pain depend on signals from injured nerve fibers in a rat model. Brain Res 1993;610(1):62-68. Shimoyama M, Shimoyama N, Hori Y. Gabapentin affects glutamatergic excitatory neurotransmission in the rat dorsal horn. Pain 2000;85(3):405-414. Sills GJ, Butler E, Forrest G, Ratnaraj N, Patsalos PN, Brodie MJ. Vigabatrin, but not gabapentin or topiramate, produces concentration-related effects on enzymes and intermediates of the GABA shunt in rat brain and retina. Epilepsia 2003;44(7):886-892. Singh L, Field MJ, Ferris P, Hunter JC, Oles RJ, Williams RG, Woodruff GN. The antiepileptic agent gabapentin (Neurontin) possesses anxiolytic-like and antinociceptive actions that are reversed by D-serine. Psychopharmacology (Berl) 1996;127(1):1-9. Sluka KA. Blockade of N- and P/Q-type calcium channels reduces the secondary heat hyperalgesia induced by acute inflammation. J Pharmacol Exp Ther 1998;287(1):232-237. Smiley MM, Lu Y, Vera-Portocarrero LP, Zidan A, Westlund KN. Intrathecal gabapentin enhances the analgesic effects of subtherapeutic dose morphine in a rat experimental pancreatitis model. Anesthesiology 2004;101(3):759-765. Smith MT, Cabot PJ, Ross FB, Robertson AD, Lewis RJ. The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 2002;96(1-2):119-127. Spoladore R, Garroni D, Fragasso G, Palloshi A, Amadio S, Montano C, Corti A, Margonato A. Post cardiac surgery diaphragmatic spasm successfully treated with gabapentin. Int J Cardiol 2005. Stefani A, Spadoni F, Giacomini P, Lavaroni F, Bernardi G. The effects of gabapentin on different ligand- and voltage-gated currents in isolated cortical neurons. Epilepsy Res 2001;43(3):239-248. Stringer JL, Aribi AM. Modulation of the in vivo effects of gabapentin by vigabatrin and SKF89976A. Epilepsy Res 2002;52(2):129-137. Su TZ, Lunney E, Campbell G, Oxender DL. Transport of gabapentin, a g-amino acid drug, by system l alpha-amino acid transporters: a comparative study in astrocytes, synaptosomes, and CHO cells. J Neurochem 1995;64(5):2125-2131. Suarez LM, Suarez F, Del Olmo N, Ruiz M, Gonzalez-Escalada JR, Solis JM. Presynaptic NMDA autoreceptors facilitate axon excitability: a new molecular target for the anticonvulsant gabapentin. Eur J Neurosci 2005;21(1):197-209. Suman-Chauhan N, Webdale L, Hill DR, Woodruff GN. Characterisation of [3H]gabapentin binding to a novel site in rat brain: homogenate binding studies. Eur J Pharmacol 1993;244(3):293-301. Sun Q, Xing GG, Tu HY, Han JS, Wan Y. Inhibition of hyperpolarization-activated current by ZD7288 suppresses ectopic discharges of injured dorsal root ganglion neurons in a rat model of neuropathic pain. Brain Res 2005;1032(1-2):63-69. Surges R, Freiman TM, Feuerstein TJ. Gabapentin increases the hyperpolarization-activated cation current Ih in rat CA1 pyramidal cells. Epilepsia 2003;44(2):150-156. Sutton KG, Martin DJ, Pinnock RD, Lee K, Scott RH. Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones. Br J Pharmacol 2002;135(1):257-265. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 1999;19(6):1895-1911. Taylor CP, Gee NS, Su TZ, Kocsis JD, Welty DF, Brown JP, Dooley DJ, Boden P, Singh L. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 1998;29(3):233-249. Taylor CP, Vartanian MG, Andruszkiewicz R, Silverman RB. 3-alkyl GABA and 3-alkylglutamic acid analogues: two new classes of anticonvulsant a | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35206 | - |
| dc.description.abstract | Gabapentin為一個新一代抗癲癇藥物,其化學結構式為模仿抑制性神經傳導物質gamma-aminobutyric acid (GABA)。Gabapentin除了具抗癲癇的作用,在動物及臨床實驗中也被發現具有止痛作用。雖然不少理論被提出,但gabapentin的作用機轉迄今尚未有定論。在早期的agonist-receptor binding study中,gabapentin並無法被證實為GABAA或GABAB受體的agonist。最近Ng等人指出gabapentin為一GABAB1a 與GABAB2 二種次單元組成的GABAB受體agonist。另外,NMDA受體與KATP鉀離子通道的活化也可能與gabapentin的作用有關。在中樞神經系統,gabapentin被發現與鈣離子通道的alpha2delta subunit有特定結合,且此結合可被magnesium chloride、ruthenium red與spermine影響。在脊髓中存在有L, P/Q, N及T型鈣離子通道,這些鈣離子通道皆具有alpha2delta subunit,其中T型鈣離子通道與疼痛傳導路徑的突觸可塑性(synaptic plasticity)有關,此突觸可塑性可發生於發炎性疼痛引起的中樞過敏化(central sensitization)。
我們在老鼠術後疼痛模式中發現在脊髓腔中給予gabapentin可以產生止痛作用,利用此一模式,我們測試 一) Gabapentin是否為一GABAB 受體的agonist;二) NMDA受體及KATP 鉀離子通道的活化是否與gabapentin的止痛作用有關; 三) magnesium chloride、ruthenium red或spermin是否會影響gabapentin的止痛作用;四)老鼠腰椎的alpha2delta-1 subunit蛋白質表現量是否有改變;五) 各種鈣離子通道阻斷劑的止痛作用。最後,我們測試脊髓腔T型鈣離子通道阻斷劑在福馬林疼痛模式的止痛作用。 在術後疼痛模式,於isoflurane麻醉下,我們在帶有脊髓腔導管的大白鼠(250-300 公克)右腳掌製造一公分傷口,以von Frey filament分別在術前,術後兩小時及脊髓腔給藥後15, 30, 45, 60, 90及120分鐘測試傷口旁縮腿閾值(Withdrawal threshold)。藥物的止痛效果以最大可能效果百分比(Percent of maximal possible effect: %MPE)表示。相關受體及離子通道(GABAA, GABAB and NMDA 受體及 KATP 離子通道) 的抑制劑在給gabapentin前5或10分鐘經脊髓腔給予. 在福馬林疼痛模式,帶有脊髓腔導管的雄性大白鼠(250-300 公克)接受右腳掌皮下打入50 microL 5% 福馬林。在打入福馬林10分鐘前,分別經脊髓腔導管給予生理食鹽水或T型鈣離子通道阻斷劑。在打入福馬林後0分鐘到9分鐘(第一期)及10分鐘到60分鐘(第二期),老鼠會產生抖腳或縮腳的動作。我們在打入福馬林後1分鐘,5分鐘及每隔5分鐘(共計60分鐘),計算1分鐘内老鼠的抖腳或縮腳次數。另外,在打入福馬林後,老鼠會產生舔腳或咬腳的動作。在打入福馬林後,我們同時計算在打入福馬林後0–5分鐘(前期)及20–40分鐘(後期),老鼠的舔腳或咬腳的累計時間。 在術後疼痛模式中,gabapentin (30-200 microg)具止痛作用。GABAB 受體的拮抗劑 CGP 35348 (60 microg) 與CGP 55845 (3 microg) 無法反轉gabapentin (100 microg) 的止痛作用,但可反轉GABAB 受體agonist baclofen的止痛作用。NMDA 受體拮抗劑 APV (6 microg) 或 MK-801 (14 microg),GABAA 受體拮抗劑 bicuculline (0.3 microg)與 KATP 離子通道拮抗劑 glibenclamide (300 microg)並不影響gabapentin的止痛作用。GABAA 受體的agonist isoguvacine (20 microg),KATP 離子通道的opener pinacidil (300 microg)與diazoxide (1200 microg)本身並不具止痛作用。 在脊髓腔中同時給予magnesium chloride (5-20 microg) 或ruthenium red (0.2-20 ng) 可以減緩gabapentin (30-200 microg) 的止痛作用,但spermine在不引起運動障礙的劑量下並不影響gabapentin的止痛作用。Magnesium chloride及ruthenium red並不影響morphine的止痛作用。另外,我們也發現在此一術後疼痛模式中,老鼠腰椎的alpha2delta-1 subunit蛋白質表現量在劃刀受傷後有增加的趨勢。 在脊髓腔給予N型鈣離子通道阻斷劑(omega-conotoxin GIVA 0.1-3 microg)具止痛作用。然而,P/Q 型鈣離子通道阻斷劑 (omega-agatoxin IVA 0.1-0.3 microg),L型鈣離子通道阻斷劑(verapamil 300 microg, diltiazem 500 microg, nimodipine 500 microg) 與T 型鈣離子通道阻斷劑(mibefradil 600 microg)皆無止痛作用。另一方面,脊髓腔内注射T型鈣離子通道阻斷劑mibefradil (50-500 microg)或nickel (1-10 microg),在福馬林疼痛模式中的第一期與第二期皆具有止痛作用﹔然而ethosuximide (100-1200 microg) 並不具止痛效果。 這些結果支持在老鼠術後疼痛模式中,gabapentin的脊髓腔止痛作用與N型鈣離子通道alpha2delta subunit的結合有關,而GABAB 受體、NMDA 受體與KATP離子通道可能不參與其中。另外,T型鈣離子通道的活化可能與福馬林引起的疼痛行為有關。 | zh_TW |
| dc.description.abstract | Gabapentin, a gamma-aminobutyric acid (GABA) analogue anticonvulsant, possesses antinociceptive effects in several animal pain models and clinical trials. Up to now, the action mechanism(s) of gabapentin remains unknown and a variety of hypotheses have been proposed. Gabapentin was initially shown to have little affinity at GABAA or GABAB receptors but was recently reported to be a selective agonist at the GABAB receptor consisting of GABAB1a-GABAB2 heterodimers. In addition, activation of NMDA receptors and ATP-sensitive K+ (KATP) channels were also reported to be involved in the cellular actions of gabapentin. A specific binding site of [3H]gabapentin in the brain has been reported to be the alpha2delta subunit of voltage-dependent Ca2+ channels, at which the binding of gabapentin was modulated by magnesium chloride, ruthenium red and spermine. In this study, we validated if these proposed cellular mechanisms contribute to the spinal analgesic effect of gabapentin using a rat model of postoperative pain. The alpha2delta subunit is present in several types (L-, P/Q-, N-, T-type) of Ca2+ channels, which are all distributed in the spinal cord. Among all types of Ca2+ channels, T-type Ca2+ channels have been implicated in the synaptic plasticity at synapses from nociceptive nerve fibers, which might be involved in the central sensitization of inflammatory pain. We have examined the following in the postoperative pain model: 1) if gabapentin acts as an GABAB receptor agonist to achieve it antiallodynic effect; 2) if activation of NMDA receptors or KATP channels are involved in the antiallodynic effect of intrathecal gabapentin; 3) if magnisium chloride, ruthenium red or spermine could affect the antiallodynic effect of intrathecal gabapentin; 4) if the expression of spinal alpha2delta-1 subunit of Ca2+ channels was altered; 5) which type of Ca2+ channel blockers would mimic the antiallodynic effects of intrathecal gabapentin. Finally, the possible antinociceptive effects of intrathecal T-type Ca2+ channel blockers were examined in the rat formalin test.
The postoperative pain model was conducted in male Sprague-Dawley rats (250-300 gm). Under isoflurane anesthesia, the rats with chronic intrathecal catheters received an incision over plantar surface of right hindpaw to produce punctate mechanical allodynia. Withdrawal thresholds to von Frey filament stimulation near the incision site were measured before, 2 h after incision and 15, 30, 45, 60, 90 and 120 min after intrathecal drug administrations. Receptor or channel (GABAA, GABAB and NMDA receptors and KATP channel) ligands were intrathecally pretreated 5 or 10 min before gabapentin was administered. The formalin test was conducted by giving subcutaneous injection of 5% formalin 50 microL into rat (Sprague-Dawley, male, 250-300 gm) right hindpaw. T-type Ca2+ channel blockers were given intrathecally 10 min before formalin injection. Biphasic flinching or shaking of the injected paw were observed after formalin injection. Phase 1 and 2 were defined as 0–9 and 10–60 min after formalin injection, respectively. The number of flinches was counted for 1-min periods at 1 and 5 min and at 5-min intervals from 10 to 60 min. The biting and licking time was also monitored during 0–5 and 20–40 min after formalin injection. Intrathecal injection of gabapentin (30-200 microg) dose-dependently reduced incision-induced allodynia. GABAB receptor antagonists, CGP 35348 and CGP 55845, did not affect gabapentin-induced antiallodynic effect at doses effective in antagonizing the antiallodynic effect of baclofen, a GABAB receptor agonist. Intrathecal pretreatment with NMDA receptor antagonists, APV (6 microg) and MK-801 (14 microg), GABAA receptor antagonist, bicuculline (0.3 microg), and KATP channel blocker, glibenclamide (300 microg), did not attenuate the antiallodynic effect of gabapentin. The GABAA receptor agonist, isoguvacine (20 microg), and KATP channel openers, pinacidil (100-300 microg) and diazoxide (600-1200 microg), per se, had little effect on the postincision allodynic response. The antiallodynic effect of gabapentin was inhibited by the alpha2delta subunit binding modulators, MgCl2 (5-20 microg) and ruthenium red (0.2-20 ng), non-competitively, but not by spermine at doses without inducing motor weakness. On the other hand, the antiallodynic effect of intrathecal morphine was unaffected by either alpha2delta subunit binding modulators. In addition, an upregulation of the alpha2delta-1 subunit of Ca2+ channels in the L4-6 dorsal spinal cord was observed in this postoperative pain model, similar to the findings in other gabapentin-sensitive animal pain models. Intrathecal omega-conotoxin GIVA (0.1-3 microg), an N-type Ca2+ channel blocker, like gabapentin, attenuated the allodynic response induced by paw incision. However, P/Q-type (omega-agatoxin IVA 0.1-0.3 microg), L-type (verapamil 300 microg, diltiazem 500 microg and nimodipine 500 microg) and T-type (mibefradil 600 microg) Ca2+ channel blockers had little effect on the postincisional allodynia. On the other hand, intrathecal injection of T-type Ca2+ channel blocker, mibefradil (50-500 microg) or nickel (1-10 microg), but not ethosuximide (100-1200 microg) dose-dependently inhibited the nociceptive behaviors in phase 1 and 2 of the formalin test. In conclusion, our results provide behavioral evidences to support that the alpha2delta subunit of N-type Ca2+ channels, but not GABAB receptors, NMDA receptors and KATP channels, may be involved in the antiallodynic action of intrathecal gabapentin in the postoperative pain model. In addition, activation of spinal T-type Ca2+ channels might be involved in formalin-induced nociceptive behaviors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:44:02Z (GMT). No. of bitstreams: 1 ntu-94-D89443003-1.pdf: 1018869 bytes, checksum: 7af7809ac3981cbd0219b6995bb7cff2 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
PAGE ABBREVIATION …..…………………………. …..…………………….. 1 ENGLISH ABSTRACT …..………………. …..……………………… … 2 CHINESE ABSTRACT …..……………….. …..………………………... 5 INTRODUCTION …..………………………………………………….… 8 1. Development of Gabapentin as a Novel Anticonvulant……………….. 8 2. Analgesic Effects of Gabapentin………………………………………… 8 2-1. Animal Pain Models Sensitive to Gabapentin……………………….. 9 2-1-1. Paw-incision Postoperative Pain Model………………………… 9 2-1-2. L5/6 Spinal Nerve Root Ligation Neuropathic Pain Model…….. 10 2-1-3. Formalin Inflammatory Pain Model……………………………… 10 2-2. Clinical Pain Status Sensitive to Gabapentin………………………… 11 3. Other Clinical Applications of Gabapentin……………………………… 12 4. Mechanisms of Actions of Gabapentin………………………………… 12 4-1. Gabapentin and GABA/GABA Receptors…………………………… 13 4-1-1. Gabapentin and GABAA Receptors……………………………… 13 4-1-2. Gabapentin and GABAB Receptors……………………………… 13 4-1-3. Gabapentin and GABA Level…………………………………….. 15 4-2. Gabapentin and Glutamate/Glutamate Receptors…………………. 16 4-2-1. Gabapentin and AMPA Receptors………………………………. 16 4-2-2. Gabapentin and NMDA Receptors………………………………. 16 4-3. Gabapentin and System L Amino Acid Transporter………………… 17 4-4. Gabapentin and KATP Channels……………………………………. 18 4-5. Gabapentin and Hyperpolarization-activated Cation Current (Ih)…. 19 4-6. Gabapentin and the alpha2delta Subunit of Ca2+ Channels……….. 19 4-6-1. Gabapentin Binding with the alpha2delta Subunit of Ca2+ Channels……….. …………………………………………………………. 20 4-6-2. Upregulation of alpha2delta-1 Subunit in Animal Pain Models.. 21 4-6-3. Gabapentin and Synaptic Transmission………………………… 21 4-6-4. Types of Ca2+ channels Involved in Gabapentin Actions……… 23 5. Roles of Spinal Ca2+ Channels in Pain Regulation…………………… 24 5-1. High-voltage Activated Ca2+ Channels……………….. …………….. 24 5-2. Low-voltage Activated Ca2+ Channels……………………………….. 25 5-2-1. Formalin Test and Long-term Potentiation……………………… 25 5-2-2. T-type Ca2+ Channels and Long-term Potentiation……………. 26 MATERIALS AND METHODS …..…………….. …………………..…. 28 1. Intrathecal Catheterization………………………………………………. 28 2. Paw Incision Surgery………………………………………………….. 28 3. Von Frey Filament Testing…………………………………………….. 29 4. Formalin Test……………………………………………………………. 30 5. Drug Treatments………………………………………………………… 30 6. Motor Function Evaluation…………………………………………….. 32 7. Western Blotting of alpha2delta-1 Subunit of Ca2+ Channels…………. 32 8. Data Analysis and Statistics…………………………………………… 33 9. Chemicals………………………………………………………………. 34 RESULTS …..…………………………………. …………………………. 35 1. Effect of Intrathecal Gabapentin in the Postoperative Pain Model…… 35 2. Roles of GABAB Receptor in the Postoperative Pain Model and Gabapentin-induced Antiallodynic Effect…………………………………..35 2-1. Baclofen Induced Antiallodynic Effect in the Postoperative Pain Model………………………………………………………………………..35 2-2. CGP 35348 Antagonized Baclofen- but not Gabapentin-induced Antiallodynic Effect…………………………………………………………………… 35 2-3. CGP 55845 Antagonized Baclofen- but not Gabapentin-Induced Antiallodynic Effect………………………………………………………………………..36 3. Effects of NMDA and GABAA Receptor Antagonists on Gabapentin-induced Antiallodynic Effect………………………………… ……………………37 3-1. APV and MK-801 did not Reverse Gabapentin-induced Antiallodynic Effect………………………………………………….…. ………………37 3-2. Bicuculline did not Reverse Gabapentin-induced Antiallodynic Effect…………………………………………………………………… 37 4. Roles of KATP Channel on Gabapentin-induced Antiallodynic Effect 38 4-1. Glibenclamide did not Reverse Gabapentin-induced Antiallodynic Effect…………………………………………………………………… 38 4-2. Pinacidil and Diazoxide Failed to Induce Antiallodynic Effect in the Postoperative Pain Model……………………………………………. 38 5. Roles of alpha2delta Subunit of Ca2+ Channels on Gabapentin-induced Antiallodynic Effect………………………………… 39 5-1. Effects of alpha2delta Subunit Binding Modulators on Gabapentin-induced Antiallodynic Effect…………………………….. 39 5-1-1. Magnesium Chloride Attenuated Gabapentin-induced Antiallodynic Effect…………………………………………….…. 39 5-1-2. Ruthenium Red Attenuated Gabapentin-induced Antiallodynic Effect………………………………………..…………………...…. 40 5-1-3. Spermine did not Affect Gabapentin-induced Antiallodynic Effect……………………………………………………………... 40 5-1-4. Magnesium Chloride, Ruthenium Red and Spermine did not Affect Morphine-induced Antiallodynic Effect……………….. 41 5-2. Spinal alpha2delta-1 Subunit is Upregulated in the Postoperative Pain Model……………………………………………….……………. 41 5-3. Effects of Intrathecal Ca2+ Channel Blockers in the Postoperative Pain Model…………………………………………………………..… 42 5-3-1. N-type Ca2+ Channel Blocker CTX-GVIA Induced Antiallodynic Effect in the Postoperative Pain Model………... 42 5-3-2. L-, T- and P/Q-type Ca2+ Channel Blockers did not Affect the Allodynic Response in the Postoperative Pain Model……..… 42 5-3-3. Bay K 8644 Reversed Gabapentin- and CTX-GVIA-induced Antiallodynic Effects……………………………………………. 43 6. Roles of Spinal T-type Ca2+ Channels in Formalin-induced Nociceptive Behaviors………………………………………………………. 43 6-1. Biphasic Nociceptive Behaviors Induced by Formalin Injection…… 44 6-2. Mibefradil Induced Antinociceptive Effect in the Formalin Test……. 44 6-3. Ethosuximide was Ineffective in the Formalin Test…………………. 45 6-4. Nickel Chloride Induced Antinociceptive Effect in the Formalin Test 45 DISCUSSION …..…………………………...……………………………. 46 Part I: Mechanism(s) of the Antiallodynic Effect of Intrathecal Gabapentin in the Rat Model of Postoperative Pain…………………. 46 1. Intrathecal Gabapentin Produces Antiallodynic Effect in the Postoperative Pain Model………………………………………..…………. 46 2. Spinal GABAB Receptors are not Involved in Gabapentin-induced Antiallodynic Effect…………………………………………………………… 46 3. Is Gabapentin a GABAB Receptor Agonist? Pros and Cons………….. 48 4. NMDA and GABAA Receptors are not the Antiallodynic Action Targets of Intrathecal Gabapentin…………………………………………. 48 5. KATP Channels are not Involved in Postincision Allodynia and Gabapentin-induced Antiallodynic Effect……………………..………….. 49 6. The alpha2delta Subunit of N-type Ca2+ Channels Might be the Action Target of Intrathecal Gabapentin…………………………………. 50 6-1. The alpha2delta Subunit of Ca2+ Channel May be Involved in Gabapentin-induced Antiallodynic Effect…………………………… 50 6-1-1. The Attenuation of Gabapentin-induced Antiallodynic Effect by Magnesium Chloride and Ruthenium Red is not Non-specific 51 6-1-2. The Attenuation of Gabapentin-induced Antiallodynic Effect by Magnesium Chloride is Unlikely Mediated by NMDA Receptors………………………………………………………….. 52 6-1-3. The Ineffectiveness of Spermine………………………………… 53 6-1-4. Magnesium Chloride and Ruthenium Red might Attenuate Gabapentin-induced Antiallodynic Effect through Modifying its Binding to the alpha2delta Subunit…………………….……….. 54 6-1-5. Upregulation of alpha2delta-1 Subunit in Animal Pain Models.. 56 6-2. N-type Ca2+ Channels Might be the Action Target of Intathecal Gabapentin……………………………………………………………… 56 Part II: Roles of Spinal Ca2+ Channels in Pain Regulation……………… 58 1. Spinal N-type Ca2+ Channel as a Promising Therapeutic Target in Pain Management…………………………………………………………….. 58 2. Spinal L- , P/Q-, and T-type Ca2+ Channels are Less involved in Nociceptive Behaviors in Animal Pain Models…………………………. 59 3. Activation of Spinal T-type Ca2+ Channels are Involved in Formalin-induced Pain Behaviors………………………………………... 59 3-1. Mibefradil and Nickel Chloride are Effective in the Formalin Test… 59 3-2. alpha1H Subtype of T-type Ca2+ Channels might be Involved in Formalin-induced Pain Behaviors……………………………………. 60 3-2-1. Distribution of T-type Ca2+ Channels in Spinal Cord and DRG 60 3-2-2. Pharmacological Sensitivity of Different Subtypes of T-type Ca2+ Channels…………………………………………………….. 61 CONCLUSION …..……………………………………………………….. 63 FUTURE PERSPECTIVES ….………….. ……………………………….. 64 FIGURES AND TABLES …..…………………………………………….. 65 REFERENCES …..…………………..…….. …………………………… 96 BIBLIOGRAPHY …..……………………….…………………… …. 113 | |
| dc.language.iso | en | |
| dc.subject | 止痛作用 | zh_TW |
| dc.subject | Gabapentin | zh_TW |
| dc.subject | 脊髓腔 | zh_TW |
| dc.subject | Intrathecal | en |
| dc.subject | Gabapentin | en |
| dc.subject | Antiallodynic Effect | en |
| dc.title | Gabapentin脊髓腔止痛作用機制之研究 | zh_TW |
| dc.title | A Study on the Antiallodynic Mechanism(s) of Intrathecal Gabapentin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 徐百川,陳景宗,汪志雄,孫維仁,簡志誠 | |
| dc.subject.keyword | 脊髓腔,Gabapentin,止痛作用, | zh_TW |
| dc.subject.keyword | Gabapentin,Antiallodynic Effect,Intrathecal, | en |
| dc.relation.page | 114 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 994.99 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
