Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭振華
dc.contributor.authorMeng-Jye Tsaien
dc.contributor.author蔡孟杰zh_TW
dc.date.accessioned2021-06-13T06:43:57Z-
dc.date.available2006-08-01
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-29
dc.identifier.citationReferences
[1] J. Guo, C.H. Wu, and F.C. Chiu, S.W. Cheng, “Tracking Control for a Biomimetic Autonomous Underwater Vehicle Using Pectoral and Caudal Fins” in ISOPE, Seonl, 2005.
[2] F.C. Chiu, J. Guo, C.P. Wu, “Simulation on the Undulatory Locomotion of a Flexible Slender Body ,” in Int’l. Symp. On Aqua Bio-Mechanisms. Hawaii,pp
185-190,200.
[3] J. Guo, F.C. Chiu, Y.J Joeng, and S. W. Cheng, “Motion Control and Way- point Tracking of a Biomimetic Underwater Vehicle,” in IEEE Intl’l Symp. On Underwater Technology. Tokyo,pp73-78,2002.
[4] J.Guo, F.C. Chiu,C.C. Chen, and Y.S.Ho, ”Determining the Bodily Motion of A Biomimetic Underwater Vehicle Under Oscillating Propulsion,” in IEEE Int’l. Conf. on Robotics and Automation. Taipei, pp.983-988,2003.
[5] J.Guo, F.C. Chiu, S.W. Cheng, and Y.S. Ho,”Control Systems for Waypoint of a Biomimetic Autonomous Underwater Vehicle,” in OCEANS.San Diego, pp.333-339, 2003.
[6] C. Rago, R. K. Mehra, “Robust Adaptive Target State Estimation for Missile Guidance using the Interacting Multiple Model Kalman Filter” in Position Location and Navigation Symposium IEEE 13-16 March, pp.355-362,2000.
[7] M.Athans, “On the Determination of Optimal Costly Measurement Strategies for Linear Strategies for Linear Stochastic Systems,” Automatica, Vol.8,pp.397-411,1972.
[8] P.C. Shih, “Localization and Mapping of a Biomimetic-autonomous Underwater Vehicle Using Active Sensing”, Master thesis, National Taiwan University, 2003.
[9] Grewal, M. S., Andrews, P. A., “Kalman Filter--Theory and Practice,” Wiley-Interscience, 2001.
[10] Anderson, B. D. O., Moore, J. B., “Optimal Control- Linear Quadratic Methods”, Prentice Hall, 1990.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35203-
dc.description.abstract本文研究的目的是,利用仿生型水下載具達到定位與追蹤移動中的目標。仿生型水下載具具有省能 、高效率、高操控性、低噪音的特性,所以利用其特性進行前述的兩項動作。首先先建立本身載具的運動模式及目標物的運動模式及估測模式。在估測方面我們利用卡爾曼濾波器作目標的估測和作載具與目標之間誤差的修正,控制器方面我們是利用胸鰭與尾鰭的協調控制方法,使載具操控性能提高,在水中運動更靈活,更容易追蹤到目標物。實作方面定位及自我軌跡位置是利用都卜勒聲納作即時的定位,計算出本身的位置及方向角。而目標是利用單點式聲納偵測目標的相對距離進而進行追蹤。zh_TW
dc.description.abstractThis study utilizes a biomimetic autonomous underwater vehicle to perform moving-target tracking. A tracker with the structure of a fish-like design has advantages such as high energy efficiency, high maneuverability, and being quiet moving in water compared to conventional autonomous underwater vehicles. Kinematics models of the tracker vehicle, and the target vehicle are established. Measurement models of sensors on-board the tracker vehicle are provided. A Kalman Filter is applied to process measurements of the target and the tracker vehicle. The coordination of a pairs of pectoral fin and tail fin of the tracker is adopted to control the precise and agile motion of the tracker vehicle. A Doppler sonar is used to navigate the tracker and to calculate the position and directional angles of the target. A point sonar is used to detect and examine the relative distances of the target and the tracker in order to make a successful tracking. A series of successful tank experimental data are presented to validate the proposed tracking and control algorithms.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:43:57Z (GMT). No. of bitstreams: 1
ntu-94-R92525039-1.pdf: 1043779 bytes, checksum: 2d5de234fd52a183c94fbb0f9a0effa5 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTABLE OF CONTENTS
誌謝.....................................................Ⅰ
摘要.....................................................Ⅱ
ABSTRACT……………………………………………………………Ⅲ
TABLE OF CONTENTS……………………………………………...Ⅳ
LIST OF FIGURES……………………………………………………Ⅵ
CHAPTER1 INTRODUCTION……………………………………….1 1.1 Motivation and Purpose……………………………………………....1 1.2 The organization…………………… ………………………………..1 1.3 Thesis organization…………………………………………………...2 CHAPTER 2 The kinematics model and measurement model………4 2.1 The kinematics model………………………………………………...5 2.1.1 Tracker kinematics model…………………………………………..6 2.1.2 Target kinematics model…………………………………................7 2.2 The measurement model…………………………………………….10 2.3 The Estimation Process……………………………………………...11 CHAPTER 3 Measurement Policy and Guidance Law……………..17 3.1 Measurement constraints……………………………………………17 3.2 State prediction……………………………………………………...20 3.3 Cost function………………………………………………………..21 3.4 Optimal measurement policies……………………………………...22 3.5 Proportional navigation guidance law ………………………...........27 3.6 Controller Design…………………………………………………...31 CHAPTER 4 Experimental Results……………………………...36 4.1 Description of hardware………………………………………….....36 4.2 Experiment……………………………………………………….…42 4.2.1 Discretized Extended Kalman Filter………………………..…….46 4.2.2 Implementation……………………………………………………49 CHAPTER 5 Conclusions……………………………………….72 Reference….…….……..……………………………………………….74
LIST FIGURE Figure 2.0.1 Coordinate systems that the tracker and the target……………………....5 Figure 2.3.1 Block diagram of signal of flow of an estimator. …………………...….11
Figure 2.3.2 Signal flow diagram of an Extended of an Extended Kalman filter……16
Figure 3.1.1 The modeling of the measurement vector ………………………...20 Figure 3.4.1 The single processing diagram of the measurement process..………….26 Figure 3.5.1Variables used in the guidance law………………………………….......28 Figure 3.5.2 Feedback control system of vehicle…………………………………….30 Figure 3.6.1 Body-spline of a swimming vehicle……………………………………31 Figure 3.6.2 Coordinate systems of the vehicle……………………………………...33 Figure 3.6.3 coordinated controller…………………………………………………..35 Figure 4.1.1 the water tank environment…………………………………………….38 Figure 4.1.2 The hardware configuration of the experimental system……………….39 Figure 4.1.3 The echo sonar……………………...…………………………………..40 Figure 4.1.4The Doppler sonar………………………………………...…………….41 Figure 4.1.5 The photo of the target vehicle…………………………………………41 Figure 4.1.6 The photo of tracker vehicle…………………………………………....42 Figure 4.2.1 The echo strength versus time………………………………………….43 Figure 4.2.2 The sonar beam intersects with a surface and targets…………….........43 Figure4.2.2.1 The trajectory of tracker of case1……………………………………..50 Figure4.2.2.2 The trajectory of tracker and target of case1…………………………..51 Figure 4.2.2.3 The uncertainty diagram of the target of case 1………………………51 Figure4.2.2.4 The uncertainty value of the target of case1…………………………..52 Figure4.2.2.5 History of the cost function of case1………………………………….52 Figure 4.2.2.6 History of the first term cost function of case1………………….........53 Figure4.2.2.7 History of the second term cost function of case1…………………….53 Figure4.2.2.8 Heading of the tracker of case1……………………………………….54 Figure4.2.2.9 Surge velocity of the tracker of case1…………………………………54 Figure4.2.2.10 Sway velocity of the tracker of case1……………………………......55 Figure 4.2.2.11 Range between the target and the tracker of case1……………….....55 Figure4.2.2.12 Heading error between the target and the tracker of case1…………..56 Figure4.2.2.13 Angular motions of joints of case1…………………………………..56 Figure4.2.2.14 The trajectory of tracker of case 2……………………………….......58 Figure4.2.2.15 The trajectory of tracker and target of case 2………………………...58 Figure 4.2.2.16 The uncertainty diagram of the target of case 2……………………..59 Figure4.2.2.17 The uncertainty value of the target of case 2………………………...59 Figure4.2.2.18 History of the cost function of case 2……………………………......60 Figure4 .2.2.19 History of the first term cost function of case 2…………………….60 Figure4.2.2.20 History of the second term cost function of case 2…………………..61 Figure4.2.2.21 Heading of the tracker of case 2…………………………………......61 Figure4.2.2.22 Surge velocity of the tracker of case 2……………………………….62 Figure4.2.2.23 Sway velocity of the tracker of case 2……………………………….62 Figure 4.2.2.24 Range between the target and the tracker of case 2……………........63 Figure4.2.2.25 Heading error between the target and the tracker of case 2………….63 Figure4.2.2.26 Angular motions of joints of case 2………………………………….64 Figure4.2.2.27 The trajectory of tracker of case 3……………………………….......65 Figure4.2.2.28 The trajectory of tracker and target of case 3………………………...66 Figure 4.2.2.29 The uncertainty diagram of the target of case 3……………………..66 Figure4.2.2.30 The uncertainty value of the target of case 3………………………...67 Figure4.2.2.31 History of the cost function of case 3……………………………......67 Figure 4.2.2.32 History of the first term cost function of case 3……………………..68 Figure4.2.2.33 History of the second term cost function of case 3…………………..68 Figure4.2.2.34 Heading of the tracker of case 3……………………………………..69 Figure4.2.2.35 Surge velocity of the tracker of case 3……………………………….69 Figure4.2.2.36 Sway velocity of the tracker of case 3……………………………….70
Figure4.2.2.37 Range between the target and the tracker of case 3………………….70
Figure4.2.2.38 Heading error between the target and the tracker of case 3………….71
Figure4.2.2.39 Angular motions of joints of case 3………………………………….71
dc.language.isoen
dc.subject卡爾曼濾波器zh_TW
dc.subject仿生魚zh_TW
dc.subject最佳估測zh_TW
dc.subjectKalman filteren
dc.subjectBAUen
dc.subjectoptimal measurementen
dc.title仿生型自主式水下載具目標追蹤
控制方法之研究
zh_TW
dc.titleGuidance and Control for Moving-target Tracking
using a Biomimetic Autonomous Underwater Vehicle
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱逢琛,陳柏全,鄭逸琳
dc.subject.keyword仿生魚,卡爾曼濾波器,最佳估測,zh_TW
dc.subject.keywordBAU,Kalman filter,optimal measurement,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2005-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved