請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35100
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王敏瑩(Man-Ying Wong) | |
dc.contributor.author | Mei-Chih Sun | en |
dc.contributor.author | 孫美芝 | zh_TW |
dc.date.accessioned | 2021-06-13T06:40:55Z | - |
dc.date.available | 2005-08-04 | |
dc.date.copyright | 2005-08-04 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-29 | |
dc.identifier.citation | 1. Page RC, Offenbacher S, Schroeder HE, Seymour GJ, Kornman KS. Advances in the pathogenesis of periodontitis: summary of developments, clinical implications and future directions. Periodontol 2000 1997;14:216-48.
2. Listgarten MA. The structure of dental plaque. Periodontol 2000 1994;5:52-65. 3. Socransky SS. Microbiology of periodontal disease -- present status and future considerations. J Periodontol 1977;48(9):497-504. 4. Poulin R, Combes C. The concept of virulence: interpretations and implications. Parasitol Today 1999;15(12):474-5. 5. Nishihara T, Koseki T. Microbial etiology of periodontitis. Periodontol 2000 2004;36:14-26. 6. Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 1998;62(4):1244-63. 7. Bainbridge BW, Darveau RP. Porphyromonas gingivalis lipopolysaccharide: an unusual pattern recognition receptor ligand for the innate host defense system. Acta Odontol Scand 2001;59(3):131-8. 8. Gemmell E, Yamazaki K, Seymour GJ. Destructive periodontitis lesions are determined by the nature of the lymphocytic response. Crit Rev Oral Biol Med 2002;13(1):17-34. 9. Loesche WJ. Chemotherapy of dental plaque infections. Oral Sci Rev 1976;9:65-107. 10. Loesche WJ. Possibilities for treating periodontal disease as specific anaerobic infections. J Can Dent Assoc 1984;50(6):467-72. 11. Socransky SS. Criteria for the infectious agents in dental caries and periodontal disease. J Clin Periodontol 1979;6(7):16-21. 12. Consensus report. Periodontal diseases: pathogenesis and microbial factors. Ann Periodontol 1996;1(1):926-32. 13. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL, Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998;25(2):134-44. 14. Chen PB, Davern LB, Katz J, Eldridge JH, Michalek SM. Host responses induced by co-infection with Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans in a murine model. Oral Microbiol Immunol 1996;11(4):274-81. 15. Yoneda M, Hirofuji T, Anan H, Matsumoto A, Hamachi T, Nakayama K, et al. Mixed infection of Porphyromonas gingivalis and Bacteroides forsythus in a murine abscess model: involvement of gingipains in a synergistic effect. J Periodontal Res 2001;36(4):237-43. 16. Ebersole JL, Feuille F, Kesavalu L, Holt SC. Host modulation of tissue destruction caused by periodontopathogens: effects on a mixed microbial infection composed of Porphyromonas gingivalis and Fusobacterium nucleatum. Microb Pathog 1997;23(1):23-32. 17. Choi JI, Borrello MA, Smith ES, Zauderer M. Polarization of Porphyromonas gingivalis-specific helper T-cell subsets by prior immunization with Fusobacterium nucleatum. Oral Microbiol Immunol 2000;15(3):181-7. 18. Takemoto T, Kurihara H, Dahlen G. Characterization of Bacteroides forsythus isolates. J Clin Microbiol 1997;35(6):1378-81. 19. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000;71(10):1554-60. 20. Vasel D, Sims TJ, Bainbridge B, Houston L, Darveau R, Page RC. Shared antigens of Porphyromonas gingivalis and Bacteroides forsythus. Oral Microbiol Immunol 1996;11(4):226-35. 21. Chen T, Duncan MJ. Gingipain adhesin domains mediate Porphyromonas gingivalis adherence to epithelial cells. Microb Pathog 2004;36(4):205-9. 22. Volozhin AI, Petrovich Iu A, Filatova ES, Barer GM, Fomina OL, Kreit Kh N, et al. [Volatile compounds in air and oral saliva in healthy people, and in periodontitis and gingivitis patients]. Stomatologiia (Mosk) 2001;80(1):9-12. 23. Laine ML, van Winkelhoff AJ. Virulence of six capsular serotypes of Porphyromonas gingivalis in a mouse model. Oral Microbiol Immunol 1998;13(5):322-5. 24. Lourbakos A, Chinni C, Thompson P, Potempa J, Travis J, Mackie EJ, et al. Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis. FEBS Lett 1998;435(1):45-8. 25. Kadowaki T, Yoneda M, Okamoto K, Maeda K, Yamamoto K. Purification and characterization of a novel arginine-specific cysteine proteinase (argingipain) involved in the pathogenesis of periodontal disease from the culture supernatant of Porphyromonas gingivalis. J Biol Chem 1994;269(33):21371-8. 26. Tada H, Sugawara S, Nemoto E, Takahashi N, Imamura T, Potempa J, et al. Proteolysis of CD14 on human gingival fibroblasts by arginine-specific cysteine proteinases from Porphyromonas gingivalis leading to down-regulation of lipopolysaccharide-induced interleukin-8 production. Infect Immun 2002;70(6):3304-7. 27. Wingrove JA, DiScipio RG, Chen Z, Potempa J, Travis J, Hugli TE. Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem 1992;267(26):18902-7. 28. Jagels MA, Ember JA, Travis J, Potempa J, Pike R, Hugli TE. Cleavage of the human C5A receptor by proteinases derived from Porphyromonas gingivalis: cleavage of leukocyte C5a receptor. Adv Exp Med Biol 1996;389:155-64. 29. Jagels MA, Travis J, Potempa J, Pike R, Hugli TE. Proteolytic inactivation of the leukocyte C5a receptor by proteinases derived from Porphyromonas gingivalis. Infect Immun 1996;64(6):1984-91. 30. Harris JI, Russell RR, Curtis MA, Aduse-Opoku J, Taylor JJ. Molecular mediators of Porphyromonas gingivalis-induced T-cell apoptosis. Oral Microbiol Immunol 2002;17(4):224-30. 31. Yoshimura F, Sugano T, Kawanami M, Kato H, Suzuki T. Detection of specific antibodies against fimbriae and membrane proteins from the oral anaerobe Bacteroides gingivalis in patients with periodontal diseases. Microbiol Immunol 1987;31(9):935-41. 32. Imamura T, Pike RN, Potempa J, Travis J. Pathogenesis of periodontitis: a major arginine-specific cysteine proteinase from Porphyromonas gingivalis induces vascular permeability enhancement through activation of the kallikrein/kinin pathway. J Clin Invest 1994;94(1):361-7. 33. Koga T, Nishihara T, Fujiwara T, Nisizawa T, Okahashi N, Noguchi T, et al. Biochemical and immunobiological properties of lipopolysaccharide (LPS) from Bacteroides gingivalis and comparison with LPS from Escherichia coli. Infect Immun 1985;47(3):638-47. 34. Shapira L, Frolov I, Halabi A, Ben-Nathan D. Experimental stress suppresses recruitment of macrophages but enhanced their P. gingivalis LPS-stimulated secretion of nitric oxide. J Periodontol 2000;71(3):476-81. 35. Jotwani R, Palucka AK, Al-Quotub M, Nouri-Shirazi M, Kim J, Bell D, et al. Mature dendritic cells infiltrate the T cell-rich region of oral mucosa in chronic periodontitis: in situ, in vivo, and in vitro studies. J Immunol 2001;167(8):4693-700. 36. Slots J. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontal disease: introduction. Periodontol 2000 1999;20:7-13. 37. Yoshimura A, Kaneko T, Kato Y, Golenbock DT, Hara Y. Lipopolysaccharides from periodontopathic bacteria Porphyromonas gingivalis and Capnocytophaga ochracea are antagonists for human toll-like receptor 4. Infect Immun 2002;70(1):218-25. 38. Tanner AC, Haffer C, Bratthall GT, Visconti RA, Socransky SS. A study of the bacteria associated with advancing periodontitis in man. J Clin Periodontol 1979;6(5):278-307. 39. Okada M, Hayashi F, Soda Y, Zhong X, Miura K, Kozai K. Intra-familial distribution of nine putative periodontopathogens in dental plaque samples analyzed by PCR. J Oral Sci 2004;46(3):149-56. 40. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the 'red complex', a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005;38:72-122. 41. Giambartolomei GH, Dennis VA, Lasater BL, Philipp MT. Induction of pro- and anti-inflammatory cytokines by Borrelia burgdorferi lipoproteins in monocytes is mediated by CD14. Infect Immun 1999;67(1):140-7. 42. Firoozkoohi J, Zandi H, Olsen I. Comparison of lipopolysaccharides from Bacteroides, Porphyromonas, Prevotella, Campylobacter and Wolinella spp. by tricine-SDS-PAGE. Endod Dent Traumatol 1997;13(1):13-8. 43. Seida K, Saito A, Yamada S, Ishihara K, Naito Y, Okuda K. A sensitive enzymatic method (SK-013) for detection of Treponema denticola, Porphyromonas gingivals and Bacteroides forsythus in subgingival plaque samples. J Periodontal Res 1992;27(2):86-91. 44. Munemasa T, Takemoto T, Dahlen G, Hino T, Shiba H, Ogawa T, et al. Adherence of Bacteroides forsythus to host cells. Microbios 2000;101(399):115-26. 45. Tan KS, Song KP, Ong G. Bacteroides forsythus prtH genotype in periodontitis patients: occurrence and association with periodontal disease. J Periodontal Res 2001;36(6):398-403. 46. Reid HI, Riggio MP. Identification and nucleotide sequence of the heat shock protein 60 (GroEL) gene of Bacteroides forsythus. DNA Seq 1998;9(5-6):359-64. 47. Hajishengallis G, Martin M, Sojar HT, Sharma A, Schifferle RE, DeNardin E, et al. Dependence of bacterial protein adhesins on toll-like receptors for proinflammatory cytokine induction. Clin Diagn Lab Immunol 2002;9(2):403-11. 48. Moncla BJ, Braham P, Hillier SL. Sialidase (neuraminidase) activity among gram-negative anaerobic and capnophilic bacteria. J Clin Microbiol 1990;28(3):422-5. 49. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392(6673):245-52. 50. Pollanen MT, Salonen JI, Uitto VJ. Structure and function of the tooth-epithelial interface in health and disease. Periodontol 2000 2003;31:12-31. 51. Meikle MC, Hembry RM, Holley J, Horton C, McFarlane CG, Reynolds JJ. Immunolocalization of matrix metalloproteinases and TIMP-1 (tissue inhibitor of metalloproteinases) in human gingival tissues from periodontitis patients. J Periodontal Res 1994;29(2):118-26. 52. Tonetti MS, Freiburghaus K, Lang NP, Bickel M. Detection of interleukin-8 and matrix metalloproteinases transcripts in healthy and diseased gingival biopsies by RNA/PCR. J Periodontal Res 1993;28(6 Pt 2):511-3. 53. Stadnyk AW. Cytokine production by epithelial cells. Faseb J 1994;8(13):1041-7. 54. Tonetti MS, Straub AM, Lang NP. Expression of the cutaneous lymphocyte antigen and the alpha IEL beta 7 integrin by intraepithelial lymphocytes in healthy and diseased human gingiva. Arch Oral Biol 1995;40(12):1125-32. 55. Gemmell E, Seymour GJ. Gamma delta T lymphocytes in human periodontal disease tissue. J Periodontol 1995;66(9):780-5. 56. Crawford JM, Krisko JM, Morris GA, Chambers DA. The distribution of Langerhans cells and CD1a antigen in healthy and diseased human gingiva. Reg Immunol 1989;2(2):91-7. 57. Osborn L. Leukocyte adhesion to endothelium in inflammation. Cell 1990;62(1):3-6. 58. Attstrom R, Schroeder HE. Effect of experimental neutropenia on initial gingivitis in dogs. Scand J Dent Res 1979;87(1):7-23. 59. Bickel M. The role of interleukin-8 in inflammation and mechanisms of regulation. J Periodontol 1993;64(5 Suppl):456-60. 60. Dennison DK, Van Dyke TE. The acute inflammatory response and the role of phagocytic cells in periodontal health and disease. Periodontol 2000 1997;14:54-78. 61. Trinchieri G. Cytokines acting on or secreted by macrophages during intracellular infection (IL-10, IL-12, IFN-gamma). Curr Opin Immunol 1997;9(1):17-23. 62. Ebersole JL, Singer RE, Steffensen B, Filloon T, Kornman KS. Inflammatory mediators and immunoglobulins in GCF from healthy, gingivitis and periodontitis sites. J Periodontal Res 1993;28(6 Pt 2):543-6. 63. Zadeh HH, Nichols FC, Miyasaki KT. The role of the cell-mediated immune response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontitis. Periodontol 2000 1999;20:239-88. 64. Yu X, Graves DT. Fibroblasts, mononuclear phagocytes, and endothelial cells express monocyte chemoattractant protein-1 (MCP-1) in inflamed human gingiva. J Periodontol 1995;66(1):80-8. 65. Page RC. The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res 1991;26(3 Pt 2):230-42. 66. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989;7:145-73. 67. Gemmell E, Seymour GJ. Immunoregulatory control of Th1/Th2 cytokine profiles in periodontal disease. Periodontol 2000 2004;35:21-41. 68. Offenbacher S. Periodontal diseases: pathogenesis. Ann Periodontol 1996;1(1):821-78. 69. Page RC, Schroeder HE. Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab Invest 1976;34(3):235-49. 70. Seymour GJ, Gemmell E, Walsh LJ, Powell RN. Immunohistological analysis of experimental gingivitis in humans. Clin Exp Immunol 1988;71(1):132-7. 71. Gusberti FA, Brecx MC, Lang NP. Microscopic evaluation of bacterial colonization of interdental subgingival sites prior to and during experimental gingivitis in man. Schweiz Monatsschr Zahnmed 1988;98(6):619-23. 72. Gemmell E, Seymour GJ. Modulation of immune responses to periodontal bacteria. Curr Opin Periodontol 1994:28-38. 73. Moser M, Murphy KM. Dendritic cell regulation of TH1-TH2 development. Nat Immunol 2000;1(3):199-205. 74. Murphy KM, Ouyang W, Farrar JD, Yang J, Ranganath S, Asnagli H, et al. Signaling and transcription in T helper development. Annu Rev Immunol 2000;18:451-94. 75. Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001;106(3):263-6. 76. Seymour GJ, Powell RN, Davies WI. Conversion of a stable T-cell lesion to a progressive B-cell lesion in the pathogenesis of chronic inflammatory periodontal disease: an hypothesis. J Clin Periodontol 1979;6(5):267-77. 77. Zappa U, Reinking-Zappa M, Graf H, Espeland M. Cell populations and episodic periodontal attachment loss in humans. J Clin Periodontol 1991;18(7):508-15. 78. Meng HX, Zheng LF. [Langerhans cells in the gingival epithelium]. Zhonghua Kou Qiang Yi Xue Za Zhi 1990;25(3):146-8, 89. 79. Taubman MA, Stoufi ED, Ebersole JL, Smith DJ. Phenotypic studies of cells from periodontal disease tissues. J Periodontal Res 1984;19(6):587-90. 80. Liljenberg B, Lindhe J, Berglundh T, Dahlen G, Jonsson R. Some microbiological, histopathological and immunohistochemical characteristics of progressive periodontal disease. J Clin Periodontol 1994;21(10):720-7. 81. Gemmell E, McHugh GB, Grieco DA, Seymour GJ. Costimulatory molecules in human periodontal disease tissues. J Periodontal Res 2001;36(2):92-100. 82. Berglundh T, Liljenberg B, Lindhe J. Some cytokine profiles of T-helper cells in lesions of advanced periodontitis. J Clin Periodontol 2002;29(8):705-9. 83. Gemmell E, Seymour GJ. Cytokine profiles of cells extracted from humans with periodontal diseases. J Dent Res 1998;77(1):16-26. 84. Fujihashi K, Yamamoto M, Hiroi T, Bamberg TV, McGhee JR, Kiyono H. Selected Th1 and Th2 cytokine mRNA expression by CD4(+) T cells isolated from inflamed human gingival tissues. Clin Exp Immunol 1996;103(3):422-8. 85. Yamazaki K, Nakajima T, Gemmell E, Polak B, Seymour GJ, Hara K. IL-4- and IL-6-producing cells in human periodontal disease tissue. J Oral Pathol Med 1994;23(8):347-53. 86. Tokoro Y, Matsuki Y, Yamamoto T, Suzuki T, Hara K. Relevance of local Th2-type cytokine mRNA expression in immunocompetent infiltrates in inflamed gingival tissue to periodontal diseases. Clin Exp Immunol 1997;107(1):166-74. 87. Gemmell E, Carter CL, Grieco DA, Sugerman PB, Seymour GJ. P. gingivalis-specific T-cell lines produce Th1 and Th2 cytokines. J Dent Res 2002;81(5):303-7. 88. Ebersole JL, Taubman MA. The protective nature of host responses in periodontal diseases. Periodontol 2000 1994;5:112-41. 89. Watford WT, Moriguchi M, Morinobu A, O'Shea JJ. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev 2003;14(5):361-8. 90. Aoyagi T, Sugawara-Aoyagi M, Yamazaki K, Hara K. Interleukin 4 (IL-4) and IL-6-producing memory T-cells in peripheral blood and gingival tissue in periodontitis patients with high serum antibody titers to Porphyromonas gingivalis. Oral Microbiol Immunol 1995;10(5):304-10. 91. Manhart SS, Reinhardt RA, Payne JB, Seymour GJ, Gemmell E, Dyer JK, et al. Gingival cell IL-2 and IL-4 in early-onset periodontitis. J Periodontol 1994;65(9):807-13. 92. Reinhardt RA, Bolton RW, McDonald TL, DuBois LM, Kaldahl WB. In situ lymphocyte subpopulations from active versus stable periodontal sites. J Periodontol 1988;59(10):656-70. 93. Reinhardt RA, McDonald TL, Bolton RW, DuBois LM, Kaldahl WB. IgG subclasses in gingival crevicular fluid from active versus stable periodontal sites. J Periodontol 1989;60(1):44-50. 94. Salvi GE, Brown CE, Fujihashi K, Kiyono H, Smith FW, Beck JD, et al. Inflammatory mediators of the terminal dentition in adult and early onset periodontitis. J Periodontal Res 1998;33(4):212-25. 95. Taubman MA, Kawai T. Involvement of T-lymphocytes in periodontal disease and in direct and indirect induction of bone resorption. Crit Rev Oral Biol Med 2001;12(2):125-35. 96. Essner R, Rhoades K, McBride WH, Morton DL, Economou JS. IL-4 down-regulates IL-1 and TNF gene expression in human monocytes. J Immunol 1989;142(11):3857-61. 97. Zissel G, Schlaak J, Schlaak M, Muller-Quernheim J. Regulation of cytokine release by alveolar macrophages treated with interleukin-4, interleukin-10, or transforming growth factor beta. Eur Cytokine Netw 1996;7(1):59-66. 98. Yao V, Platell C, Hall JC. Dendritic cells. ANZ J Surg 2002;72(7):501-6. 99. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3(2):133-46. 100. Sundstrom JB, Ansari AA. Comparative study of the role of professional versus semiprofessional or nonprofessional antigen presenting cells in the rejection of vascularized organ allografts. Transpl Immunol 1995;3(4):273-89. 101. Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001;106(3):259-62. 102. Lanzavecchia A, Sallusto F. Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2001;2(6):487-92. 103. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999;20(12):561-7. 104. Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 2003;19(5):641-4. 105. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000;13(5):715-25. 106. Frucht DM. IL-23: a cytokine that acts on memory T cells. Sci STKE 2002;2002(114):PE1. 107. Puccetti P, Belladonna ML, Grohmann U. Effects of IL-12 and IL-23 on antigen-presenting cells at the interface between innate and adaptive immunity. Crit Rev Immunol 2002;22(5-6):373-90. 108. Ling P, Gately MK, Gubler U, Stern AS, Lin P, Hollfelder K, et al. Human IL-12 p40 homodimer binds to the IL-12 receptor but does not mediate biologic activity. J Immunol 1995;154(1):116-27. 109. Gillessen S, Carvajal D, Ling P, Podlaski FJ, Stremlo DL, Familletti PC, et al. Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur J Immunol 1995;25(1):200-6. 110. Mattner F, Fischer S, Guckes S, Jin S, Kaulen H, Schmitt E, et al. The interleukin-12 subunit p40 specifically inhibits effects of the interleukin-12 heterodimer. Eur J Immunol 1993;23(9):2202-8. 111. Carra G, Gerosa F, Trinchieri G. Biosynthesis and posttranslational regulation of human IL-12. J Immunol 2000;164(9):4752-61. 112. Ha SJ, Lee CH, Lee SB, Kim CM, Jang KL, Shin HS, et al. A novel function of IL-12p40 as a chemotactic molecule for macrophages. J Immunol 1999;163(5):2902-8. 113. Abdi K. IL-12: the role of p40 versus p75. Scand J Immunol 2002;56(1):1-11. 114. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 1999;93(5):1634-42. 115. Ding L, Shevach EM. IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function. J Immunol 1992;148(10):3133-9. 116. Corinti S, Albanesi C, la Sala A, Pastore S, Girolomoni G. Regulatory activity of autocrine IL-10 on dendritic cell functions. J Immunol 2001;166(7):4312-8. 117. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. J Immunol 1997;159(10):4772-80. 118. Allavena P, Piemonti L, Longoni D, Bernasconi S, Stoppacciaro A, Ruco L, et al. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 1998;28(1):359-69. 119. McBride JM, Jung T, de Vries JE, Aversa G. IL-10 alters DC function via modulation of cell surface molecules resulting in impaired T-cell responses. Cell Immunol 2002;215(2):162-72. 120. Enk AH, Angeloni VL, Udey MC, Katz SI. Inhibition of Langerhans cell antigen-presenting function by IL-10. A role for IL-10 in induction of tolerance. J Immunol 1993;151(5):2390-8. 121. Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 1991;146(10):3444-51. 122. Cutler CW, Jotwani R, Palucka KA, Davoust J, Bell D, Banchereau J. Evidence and a novel hypothesis for the role of dendritic cells and Porphyromonas gingivalis in adult periodontitis. J Periodontal Res 1999;34(7):406-12. 123. Jotwani R, Cutler CW. Multiple dendritic cell (DC) subpopulations in human gingiva and association of mature DCs with CD4+ T-cells in situ. J Dent Res 2003;82(9):736-41. 124. Cirrincione C, Pimpinelli N, Orlando L, Romagnoli P. Lamina propria dendritic cells express activation markers and contact lymphocytes in chronic periodontitis. J Periodontol 2002;73(1):45-52. 125. DiFranco CF, Toto PD, Rowden G, Gargiulo AW, Keene JJ, Jr., Connelly E. Identification of Langerhans cells in human gingival epithelium. J Periodontol 1985;56(1):48-54. 126. Saglie FR, Pertuiset JH, Smith CT, Nestor MG, Carranza FA, Jr., Newman MG, et al. The presence of bacteria in the oral epithelium in periodontal disease. III. Correlation with Langerhans cells. J Periodontol 1987;58(6):417-22. 127. Moughal NA, Adonogianaki E, Kinane DF. Langerhans cell dynamics in human gingiva during experimentally induced inflammation. J Biol Buccale 1992;20(3):163-7. 128. Seguier S, Godeau G, Brousse N. Immunohistological and morphometric analysis of intra-epithelial lymphocytes and Langerhans cells in healthy and diseased human gingival tissues. Arch Oral Biol 2000;45(6):441-52. 129. Seguier S, Godeau G, Leborgne M, Pivert G, Brousse N. Quantitative morphological analysis of Langerhans cells in healthy and diseased human gingiva. Arch Oral Biol 2000;45(12):1073-81. 130. Gemmell E, Carter CL, Hart DN, Drysdale KE, Seymour GJ. Antigen-presenting cells in human periodontal disease tissues. Oral Microbiol Immunol 2002;17(6):388-93. 131. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol 2001;167(9):5067-76. 132. Jotwani R, Pulendran B, Agrawal S, Cutler CW. Human dendritic cells respond to Porphyromonas gingivalis LPS by promoting a Th2 effector response in vitro. Eur J Immunol 2003;33(11):2980-6. 133. Hamada N, Watanabe K, Sasakawa C, Yoshikawa M, Yoshimura F, Umemoto T. Construction and characterization of a fimA mutant of Porphyromonas gingivalis. Infect Immun 1994;62(5):1696-704. 134. Evans RT, Klausen B, Genco RJ. Immunization with fimbrial protein and peptide protects against Porphyromonas gingivalis-induced periodontal tissue destruction. Adv Exp Med Biol 1992;327:255-62. 135. van Winkelhoff AJ, Appelmelk BJ, Kippuw N, de Graaff J. K-antigens in Porphyromonas gingivalis are associated with virulence. Oral Microbiol Immunol 1993;8(5):259-65. 136. Sundqvist G, Bengtson A, Carlsson J. Generation and degradation of the complement fragment C5a in human serum by Bacteroides gingivalis. Oral Microbiol Immunol 1988;3(3):103-7. 137. Watanabe H, Marsh PD, Ivanyi L. Detection of immunodominant antigens of periodontopathic bacteria in human periodontal disease. Oral Microbiol Immunol 1989;4(3):159-64. 138. Galanos C, Luderitz O, Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem 1969;9(2):245-9. 139. O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004;35:101-34. 140. Yoshimura A, Hara Y, Kaneko T, Kato I. Secretion of IL-1 beta, TNF-alpha, IL-8 and IL-1ra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. J Periodontal Res 1997;32(3):279-86. 141. Califano JV, Schifferle RE, Gunsolley JC, Best AM, Schenkein HA, Tew JG. Antibody reactive with Porphyromonas gingivalis serotypes K1-6 in adult and generalized early-onset periodontitis. J Periodontol 1999;70(7):730-5. 142. Jotwani R, Cutler CW. Fimbriated Porphyromonas gingivalis is more efficient than fimbria-deficient P. gingivalis in entering human dendritic cells in vitro and induces an inflammatory Th1 effector response. Infect Immun 2004;72(3):1725-32. 143. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989;170(6):2081-95. 144. Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, de Saint-Vis B, Jacquet C, et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp Med 1996;184(2):695-706. 145. Morel AS, Quaratino S, Douek DC, Londei M. Split activity of interleukin-10 on antigen capture and antigen presentation by human dendritic cells: definition of a maturative step. Eur J Immunol 1997;27(1):26-34. 146. Kanaya S, Nemoto E, Ogawa T, Shimauchi H. Porphyromonas gingivalis lipopolysaccharides induce maturation of dendritic cells with CD14+CD16+ phenotype. Eur J Immunol 2004;34(5):1451-60. 147. Pastore S, Fanales-Belasio E, Albanesi C, Chinni LM, Giannetti A, Girolomoni G. Granulocyte macrophage colony-stimulating factor is overproduced by keratinocytes in atopic dermatitis. Implications for sustained dendritic cell activation in the skin. J Clin Invest 1997;99(12):3009-17. 148. Haase C, Jorgensen TN, Michelsen BK. Both exogenous and endogenous interleukin-10 affects the maturation of bone-marrow-derived dendritic cells in vitro and strongly influences T-cell priming in vivo. Immunology 2002;107(4):489-99. 149. Akbari O, DeKruyff RH, Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001;2(8):725-31. 150. McGuirk P, McCann C, Mills KH. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002;195(2):221-31. 151. Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997;389(6652):737-42. 152. Cavani A, Nasorri F, Prezzi C, Sebastiani S, Albanesi C, Girolomoni G. Human CD4+ T lymphocytes with remarkable regulatory functions on dendritic cells and nickel-specific Th1 immune responses. J Invest Dermatol 2000;114(2):295-302. 153. Cottrez F, Hurst SD, Coffman RL, Groux H. T regulatory cells 1 inhibit a Th2-specific response in vivo. J Immunol 2000;165(9):4848-53. 154. Roncarolo MG, Levings MK. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr Opin Immunol 2000;12(6):676-83. 155. Levings MK, Roncarolo MG. T-regulatory 1 cells: a novel subset of CD4 T cells with immunoregulatory properties. J Allergy Clin Immunol 2000;106(1 Pt 2):S109-12. 156. McGuirk P, Mills KH. Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. Trends Immunol 2002;23(9):450-5. 157. Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000;101(5):455-8. 158. Darveau RP, Cunningham MD, Bailey T, Seachord C, Ratcliffe K, Bainbridge B, et al. Ability of bacteria associated with chronic inflammatory disease to stimulate E-selectin expression and promote neutrophil adhesion. Infect Immun 1995;63(4):1311-7. 159. Madianos PN, Papapanou PN, Sandros J. Porphyromonas gingivalis infection of oral epithelium inhibits neutrophil transepithelial migration. Infect Immun 1997;65(10):3983-90. 160. Reife RA, Shapiro RA, Bamber BA, Berry KK, Mick GE, Darveau RP. Porphyromonas gingivalis lipopolysaccharide is poorly recognized by molecular components of innate host defense in a mouse model of early inflammation. Infect Immun 1995;63(12):4686-94. 161. Ogawa T, Uchida H. Differential induction of IL-1 beta and IL-6 production by the nontoxic lipid A from Porphyromonas gingivalis in comparison with synthetic Escherichia coli lipid A in human peripheral blood mononuclear cells. FEMS Immunol Med Microbiol 1996;14(1):1-13. 162. Lindemann RA, Economou JS, Rothermel H. Production of interleukin-1 and tumor necrosis factor by human peripheral monocytes activated by periodontal bacteria and extracted lipopolysaccharides. J Dent Res 1988;67(8):1131-5. 163. Lindemann RA, Economou JS. Actinobacillus actinomycetemcomitans and Bacteroides gingivalis activate human peripheral monocytes to produce interleukin-1 and tumor necrosis factor. J Periodontol 1988;59(11):728-30. 164. Agarwal S, Piesco NP, Johns LP, Riccelli AE. Differential expression of IL-1 beta, TNF-alpha, IL-6, and IL-8 in human monocytes in response to lipopolysaccharides from different microbes. J Dent Res 1995;74(4):1057-65. 165. Seymour GJ, Gemmell E, Reinhardt RA, Eastcott J, Taubman MA. Immunopathogenesis of chronic inflammatory periodontal disease: cellular and molecular mechanisms. J Periodontal Res 1993;28(6 Pt 2):478-86. 166. Yamazaki K, Nakajima T, Aoyagi T, Hara K. Immunohistological analysis of memory T lymphocytes and activated B lymphocytes in tissues with periodontal disease. J Periodontal Res 1993;28(5):324-34. 167. Kinane DF, Lappin DF. Clinical, pathological and immunological aspects of periodontal disease. Acta Odontol Scand 2001;59(3):154-60. 168. MacDonald AJ, Duffy M, Brady MT, McKiernan S, Hall W, Hegarty J, et al. CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis C virus-infected persons. J Infect Dis 2002;185(6):720-7. 169. Barnes PF, Chatterjee D, Abrams JS, Lu S, Wang E, Yamamura M, et al. Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannan. Relationship to chemical structure. J Immunol 1992;149(2):541-7. 170. Marie JC, Kehren J, Trescol-Biemont MC, Evlashev A, Valentin H, Walzer T, et al. Mechanism of measles virus-induced suppression of inflammatory immune responses. Immunity 2001;14(1):69-79. 171. Taoufik Y, Lantz O, Wallon C, Charles A, Dussaix E, Delfraissy JF. Human immunodeficiency virus gp120 inhibits interleukin-12 secretion by human monocytes: an indirect interleukin-10-mediated effect. Blood 1997;89(8):2842-8. 172. Feng GJ, Goodridge HS, Harnett MM, Wei XQ, Nikolaev AV, Higson AP, et al. Extracellular signal-related kina | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35100 | - |
dc.description.abstract | 本實驗的目的是觀察牙周致病菌Porphyromonas gingivalis、Tannerella forsythensis〈舊名為Bacteroides forsythus〉、及其所萃取出的脂多醣內毒素,在體外對人類單核球衍生的樹突狀細胞,產生發炎前期細胞激素的影響。單核球衍生樹突狀細胞是從20個健康受試者之新鮮周邊血中分離並培養,分別以熱處理過的細菌、及不同濃度的脂多醣內毒素刺激24小時後,利用流式細胞儀觀察樹突狀細胞表型的改變,以ELISA方式測量分泌細胞激素產量、及反轉錄同步定量聚合酶連鎖反應偵測激素的基因表現,E. coli及其LPS在本實驗則為正向控制組。實驗結果顯示,體外經P. gingivalis、T. forsythensis及其LPS刺激樹突狀細胞,細胞的型態會改變、其中表面第1型及第2型MHC胜肽類複合物〈HLA-DR〉的表現及穩定度提昇,成熟化的記號〈CD83〉增加、共同刺激分子〈CD80、CD86〉的表現量也上昇。細胞激素測定方面,發現經細菌及其LPS刺激後,細胞激素的產量,與對照組相較,均顯著提昇,IL-10大於IL-12p40及IL-12p70,全菌的反應則較脂多醣內毒素明顯,皆具統計上的差異;樹突狀細胞受3種細菌的脂多醣內毒素刺激,分泌的細胞激素產量卻沒有明顯差別,IL-10具有劑量依存效應,但不具有統計上的意義;以E. coli刺激時,得到的IL-10、IL-12p70產量,顯著高於P. gingivalis和T. forsythensis,但在細胞激素分泌型式的比較上,沒有明顯的改變。本實驗所偵測到的IL-12,多為p40蛋白型式,IL-12p70的分泌量較低。細胞激素基因表現結果與ELISA結果類似,3種細菌刺激樹突狀細胞3小時後,IL-10 mRNA的表現最強,次為IL-12p40、IL-12p35最低,IL-12p35的mRNA,僅在以E. coli刺激時,有較顯著的提昇。由實驗結果得知,P. gingivalis及T. forsythensis感染寄主時,除了脂多醣內毒素外,其他細菌成份可能也在活化樹突狀細胞、及產生細胞激素的過程中參與反應。此外,牙周致病菌早期侵犯宿主時,可能因為較弱的免疫刺激能力、並能在初期免疫反應促使樹突狀細胞分泌高量抗發炎細胞激素,並誘導具有免疫抑制性質的調節性T淋巴球活化,使牙周感染區域形成慢性發炎的病灶,以避免遭到免疫細胞清除的命運。 | zh_TW |
dc.description.abstract | The present study was to investigate the effect of periodontal pathogens Porphyromonas gingivalis, Tannerella forsythensis (Bacteroides forsythus) and their lipopolysaccharides (LPS) on the production of cytokines from human monocyte-derived dendritic cells (MDDC). MDDC were isolated from 20 healthy subjects and co-cultured with the heat treated whole bacteria or their LPS. The phenotypic changes were evaluated with flow cytometry, the cytokine profiles were determined by ELISA, and the mRNA expression of cytokine was analysis by real-time RT-PCR. E. coli and its LPS were used as positive control. The results showed that in vitro monocyte-derived DCs pulsed with P. gingivalis 33277, T. forsythensis 338 and their LPS would change the morphology and increase the surface expression and stability of MHC class I and class II-peptide complexes (HLA-DR), upregulated the maturation marker (CD83) and adhesion and co-stimulatory molecules(CD80, CD86). On cytokine detection, IL-10 production was higher than IL-12p40 and IL-12p70 in all groups. The response of whole bacteria was stronger than that of the LPS. Lipopolysaccharides of different bacteria induced similar IL-10 and IL-12 profiles from DCs with a dose dependent effect on IL-10. DCs pulsed with E. coli produced more IL-10 and IL-12 than P. gingivalis and T. forsythensis, without significant change of cytokine profile patterns. Most of IL-12 produced was in p40 form, rather than IL-12p70. IL-10 mRNA was highly expressed on DC after stimulation with the bacteria, but IL-12p35 mRNA level was elevated clearly only when DC pulsed with E. coli. The present study implicated that the components of P. gingivalis and T. forsythensis, other than LPS, maybe responsible for the interaction of the bacteria and the dendritic cells. The periodontal pathogens may induce the anti-inflammatory cytokine production to suppress the function of the dendritic cells in the innate immune response, and direct naïve T cells to regulatory T lymphocytes with immunosupressive properties. P. gingivalis and T. forsythensis with weaker immunostimulatory activity than E. coli may contribute to the induction of chronic inflammation at local lesion of periodontal infection. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:40:55Z (GMT). No. of bitstreams: 1 ntu-94-R91422001-1.pdf: 2771019 bytes, checksum: b0d0bf95f593b1cb0a0c40e7f7824b7e (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 中文摘要 1
Abstract 3 文獻回顧 5 細菌在牙周病的致病角色 6 1.細菌與牙周致病因子相關性 6 引發組織破壞的機轉 7 2.牙周致病菌 8 Porphyromonas gingivalis抗原特性 10 Tannerella forsythensis抗原特性 13 宿主對牙周致病菌入侵的免疫反應 16 1. 初期免疫反應〈Innate immunity〉 16 牙齦組織的保護功能 16 牙周組織的初期免疫反應 17 2. 後繼免疫反應〈adaptive immunity〉 19 牙周組織的後繼免疫反應 19 3. T淋巴球控制後繼免疫反應的功能 20 牙周病免疫學對T淋巴球的研究 22 Th1與Th2免疫反應在牙周疾病進展的理論分歧 25 I. Seymour & Gemmel 牙周病進展模型假說的相關證據 26 II. Ebersole & Taubman牙周病進展模型假說的相關證據 28 牙周病對初期免疫反應引導T淋巴球分化的影響 31 樹突狀細胞與牙周疾病的相關性 33 1. 初期免疫反應中的樹突狀細胞 33 2. 樹突狀細胞調節T淋巴球反應機制 34 IL-12與引導初期及後繼免疫反應的功能 36 IL-10對抗原呈現細胞及免疫反應的影響 38 3. 牙周組織中的樹突狀細胞 40 在牙周組織的分佈位置 40 與牙周疾病的相關性 41 牙周致病菌對樹突狀細胞的影響 43 過去牙周致病菌與樹突狀細胞相關研究的缺失 44 實驗目的 46 實驗材料及方法 47 1. 細菌培養與脂多醣內毒素〈LPS〉的製備 47 2. 受試者樣本選取 48 3. 人類單核球衍生樹突狀細胞〈MDDCs〉的純化與培養 49 4. 細菌、脂多醣內毒素刺激單核球衍生樹突狀細胞產生細胞激素 50 5. 流式細胞儀測定樹突狀細胞成熟化表徵 51 6. IL-10、IL-12p40及IL-12p70細胞激素的測定 52 7. 反轉錄─同步定量聚合酶連鎖反應〈RT-real time PCR〉 53 單核球衍生樹突狀細胞mRNA的分離 53 mRNA反轉錄反應〈Reverse transcriptase reaction〉 54 同步定量聚合酶連鎖反應〈Real time-PCR〉 55 8. 統計分析 57 實驗結果(Results) 58 1.單核球衍生樹突狀細胞激活後的型態改變 58 2.流式細胞儀的訊號表現 59 純化CD14+單核球的表型 59 未成熟樹突狀細胞表面的訊號表現 59 成熟樹突狀細胞表面的訊號表現 60 3. ELISA偵測細胞激素濃度的結果 63 IL-10的濃度變化 64 IL-12的濃度變化 65 樹突狀細胞分泌IL-10與IL-12p70的比例 67 4.反轉錄同步定量聚合酶連鎖反應的結果 68 β-actin mRNA的表現 68 Realtime-PCR定量的結果 68 標定基因電泳的結果 70 討論(Discussion) 71 抗原型式與細胞激素產量的差異 72 牙周致病菌刺激樹突狀細胞分泌的早期激素 74 與過去研究相較樹突狀細胞對T淋巴球影響 78 IL-12 80 體外培養樹突狀細胞及組織學 82 結論(Conclusion) 87 圖表 88 參考書目〈References〉 114 圖表目錄 圖1:CD14+單核球的型態 89 圖2:〈100X〉單核球衍生樹突狀細胞型態改變 90 圖3:〈400X〉單核球衍生樹突狀細胞型態改變 91 圖4:〈1000X〉單核球衍生樹突狀細胞型態改變 92 圖5:單核球CD14+的表現 93 圖6:培養6天之單核球表現CD14的情形 93 圖7:未成熟樹突狀細胞的表型: 94 圖8:牙周致病菌刺激DC表型的改變 95 圖9:細菌活化CD83表現的改變 96 圖10:LPS活化CD83表現的改變 97 圖11:細菌活化CD80表現的改變 98 圖12:LPS活化CD80表現的改變 99 圖13:細菌活化CD86表現的改變 100 圖14:LPS活化CD86表現的改變 101 圖15:細菌活化HLA-DR表現的改變 102 圖16:LPS活化HLA-DR表現的改變 103 TABLE I.:牙周致病菌活化樹突狀細胞分泌激素的產量 104 圖17:樹突狀細胞激素型式的比較 104 圖18:細菌和LPS種類對 IL-10產量的影響 105 圖19:抗原型式對IL-10分泌的影響 105 圖20:細菌和LPS種類對IL-12p40產量的影響 106 圖21:抗原型式對IL-12p40分泌的影響 106 圖22:細菌和LPS種類對IL-12p70產量的影響 107 圖23:抗原型式對IL-12p70分泌的影響。 107 圖24:樹突狀細胞分泌IL-12p40與p70的比例 108 圖25:樹突狀細胞IL-10與IL-12p70產量的比例………………………………108 圖26:樹突狀細胞Β-actin的表現 109 圖27:cDNA濃度與ΔCT 109 TABLE II:Validation Test 110 圖28:Validation Test (GAPDH與IL-10、IL-12p40、p35) 110 圖29:樹突狀細胞GAPDH的表現 111 TABLE III:樹突狀細胞IL-10, IL-12p40 & p35的mRNA表現 111 圖30:樹突狀細胞IL-10、IL-12p40、及IL-12p35基因表現倍數差異 112 圖31:GAPDH電泳結果 112 圖32:IL-10 mRNA電泳的結果 113 圖33:IL-12p40 mRNA電泳的結果 113 圖3:IL-12p35 mRNA電泳的結果 113 | |
dc.language.iso | zh-TW | |
dc.title | 牙周致病菌Porphyromonas gingivalis、Tannerella forsythensis
對人類單核球衍生樹突狀細胞產生細胞激素的影響 | zh_TW |
dc.title | Effects of periodontal pathogens Porphyromonas gingivalis and Tannerella forsythensis on cytokine production of human monocyte-derived dendritic cells. | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 江伯倫(Bor-Luen Chiang) | |
dc.contributor.oralexamcommittee | 侯連團(Lein-Tuan Hou),傅鍔 | |
dc.subject.keyword | 樹突狀細胞,脂多醣內毒素,細胞激素,T淋巴球,IL-10,IL-12, | zh_TW |
dc.subject.keyword | Porphyromonas gingivalis,Tannerella forsythensis,dendritic cell,LPS,cytokine,T cell,IL-10,IL-12, | en |
dc.relation.page | 136 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-08-01 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 2.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。