請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35048完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭裕源(Yuh-Yuan Shiau) | |
| dc.contributor.author | Huey-Yuan Wang | en |
| dc.contributor.author | 王慧媛 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:39:37Z | - |
| dc.date.available | 2005-08-24 | |
| dc.date.copyright | 2005-08-24 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-08-03 | |
| dc.identifier.citation | Adams JC. Outline of orthopaedics. 9th ed. London: Churchill Livingstone; 1981. p. 70-71.
Agerberg G, Carlsson G. Functional disorders of the masticatory system. I. Distribution of symptoms according to age and sex as judged from investigation by questionnaire. Acta Odontol Scand 1972;30:597-613. Alter MJ. Modern overview of flexibility and stretching. In Science of flexibility 3rd ed. Champaign,IL: Human Kinetics; 2004a. p. 3-4. Alter MJ. Special factors in flexibility. In Science of flexibility 3rd ed. Champaign,IL: Human Kinetics; 2004b. p. 121. Bates RE, Stewart CM, Atkinson WB. The relationship between internal derangements of the temporomandibular joint and systemic joint laxity. J Am Dent Assoc 1984;109:446-447. Beighton P, Horan F. Orthopaedic aspects of the Ehlers-Danlos syndrome. J Bone joint Surg 1969;51B:444-453. Beighton P, Solomon L, Soskolne CL. Articular mobility in an African population. Ann Rheum Dis 1973;32:413-418. Bernal M, Tsamtsouris A. Signs and symptoms of temporomandibular joint dysfunction in 3 to 5 -year-old children. J Pedo 1986;10:127-140. Bettica P, Cline G, Hart DJ, Meyer J, Spector TD. Evidence for increased bone resorption in patients with progressive knee osteoarthritis. Longitudinal results from the Chingford study. Arthritis Rheum 2002;46:3178-3184. Bonnick SL. Bone densitometry in clinical practice Application and interpretation. 2nd ed, Humana Press, 2004. Boonick SL, Nichols DL, Sanborn CF, et al. Dissimilar spine and femoral z-scores in premenopausal women. Calcif Tissue Int 1997;61:263-265. Boone DC, Azen SP, Lin CM, Spence C, Baron C, Lee L. Reliability of goniometric ,measurements. Phys Ther 1978;58:1355-1360. Buckingham RB, Braun T, Harinstein DA, Oral K, Bauman D, Bartynski W, Killian PJ, Bidula LP. Temporomandibular joint dysfunction syndrome: a close association with systemic joint laxity (the hypermobile joint syndrome) Oral Surg Oral Med Oral Pathol 1991;72:514-519. Carter C, Wilkinson J. Persistent joint laxity and congenital dislocation of the hip. J Bone Joint Surg 1964;46B:40-45. Chen YJ, Gallo LM, Meier D, Palla S. Dynamic magnetic resonance imaging technique for the study of the temporomandibular joint. J Orofac Pain 2000;14:65-73. Chen YJ, Gallo LM, Palla S. The mediolateral temporomandibular joint disc position: An in vivo quantitative study. J Orofac Pain 2002;16:29-38. Chen YJ, Shih TT-F, Wang JS, Wang HY, Shiau YY. Magnetic resonance images of the temporomandibualr joints of patients with acquired open bite. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;99:734-742. Consensus development conference: prophylaxis and treatment of osteoporosis. Am J Med 1993;94:646-650. Conti PCR, Miranda JES, Araujo CRP. Relationship between systemic joint laxity, TMJ hypertranslation, and intr-articular disorders. J Craniomandib Pract 2000;18:192-197. de Bont LGM, Boering G, Liem RSB, Eulderink F, Westesson PL. Osteoarthritis and internal derangement of the temporomandibular joint: A light microscopic study. J Oral Maxillofac Surg 1986;44:634-643. de Leeuw R, Boering G, Stegenga B, de Bont LGM. Temporomandibular joint osteoarthrosis: clinical and radiographic characteristics 30 years after nonsurgical treatment: A preliminary report. J Craniomandib Pract 1993;11:15-24. de Leeuw R, Boering G, Stegenga B, de Bont LGM. Symptoms of temporomandibular joint osteoarthritis and internal derangement 30 years after non-surgical treatment. J Craniomandib Pract 1995;13:81-88. Dijkstra PU, de Bont LGM, de Leeuw R, Stegenga B, Boering G. Temporomandibular joint osteoarthrosis and temporomandibular joint hypermobility. J Craniomandib Pract 1993;11:268-275. Dijkstra PU, de Bont LGM, van der Weele LT, Boering G. Joint mobility measurements: reliability of a standardized method. J Craniomandib Pract 1994a;12:52-57. Dijkstra PU, de Bont LGM, van der Weele LT, Boering G. The relationship between temporomandibular joint mobility and peripheral joint mobility reconsidered. J Craniomandib Pract 1994b;12:149-155. Dijkstra PU, de Bont LGM, Stegenga B, Boering G. Temporomandibular joint mobility assessment: a comparison between four methods. J Oral Rehab 1995;22:439-444. Dolan AL, Hart DJ, Doyle DV, Grahame R, Spector TD. The relationship of joint hypermobility, bone mineral density, and osteoarthritis in the general population: The chingford study. J Rheumat 2003;30:799-803. Eberhard D, Bantleon H-P, Steger W. Functional magnetic resonance imaging of temporomandibular joint disorders. European J Orthodont 2000;22:489-497. Egermark-Eriksson I, Carlsson G, Ingervall B. Prevalence of mandibular dysfunction and orofacial parafunction in 7, 11, and 15 year old Swedish children. Eur J Orthod 1981;3:163-172. Fairbank JCT, Pynsent PB, Phillips H. Quantitative measurements of joint mobility in adolescents. Ann Rheum Dis 1984;43:288-294. Frymoyer JW, Krag MH. Spinal stability and instability: definitions, classification, and general principles of management. In The unstable spine Dunsker and Stewart, Grune & Stratton, 1986. p. 3-4. Gajdosik RL, Bohannon RW. Clinical measurement of range of motion: review of goniometry emphasizing reliability and validity. Phys Ther 1987;67:1867-1872. Gambacciani M, Spinetti A, de Simone L, Cappagli B, Maffei S, Taponeco F, Fioretti P. The relative contributions of menopause and aging to postmenopausal vertebral osteopenia. J Clin Endocrinol Metab 1993;77:1148-1151. Grahame R. Hypermobility syndrome. In Rheumatology. 2nd ed, Klippel JH and Dieppe PA. London: Mosby; 1998. p. 51.1-6. Grahame R. Joint hypermobility and genetic collagen disorders: are they related? Arch Dis Child 1999;80:188-191. Grahame R. Bird H, Child A, Dolan AL, Fowler AE, Ferrell A, Green SG, Keer R, Mans E, Murray EJ, Smith E. The revised (Brighton 1998) criteria for the diagnosis of benign joint hypermobility syndrome (BJHS). J Rheum 2000;274: 1777-1779. Harinstein D, Buckingham RB, Braun T, Oral K, Bauman DH, Killian PJ, Bidula LP. Systemic joint laxity (the hypermobile joint syndrome) is associated with temporomandibular joint dysdunction. Arthritis Rheum 1988;10:1259-1264. Hatcher DC, McEvory SP, Mah RT, Faulkner MG. Distribution of local and general stresses in the stomatognathic system. In Science and Practice of occlusion. McNeill C. Quintessence Publishing Co; 1997. p. 259-270. Horner K, Devlin H. Alsop CW, Hodgkinson IM, Adams JE. Mandibular bone mineral density as a predictor of skeletal osteoporosis. Br J Radio 1996;69:1019-1025. Isberg A, et al. Frequency of bilateral temporomandibular joint disc displacement in patients with unilateral symptoms: a 5-year follow-up of the asymptomatic joint. A clinical and arthrotomographic study. Dentomaxillofac Radiol, 1991;20:73-76. Jessee EF, Owen JR DS, Sagar KB. The benign hypermobile joint syndrome. Arthritis Rheum 1980;23:1053-1056. Katzberg RW, Keith DA, Guralnick WC, Manzione JV, Eick WRT. Internal derangements and arthritis of the temporomandibular joint. Radiology 1983;146:107-112. Katzberg RW, Westesson P-L, Tallents RH, Anderson R, Kurita K, Manzione JV, Totterman S. Temporomandibular joint: MR assessment of rotational and sideways disc displacements. Radiology 1988;169:741-748. Katzberg RW. Temporomandibular joint imaging. Radiology 1989;170:297-301. Katzberg RW, Westesson P-L. Diagnosis of the temporomandibular joint. W.B. Saunders Company; 1993. p. 26-33. Katzberg RW, Westesson P-L, Tallents RH, Drake CM. Anatomic disorders of the temporomandibular joint disc in asymptomatic subjects. J Oral Maxillofac Surg 1996;54:147-153. Kersten HCJ, Golding RP, Valk J, van der Kwast WAM. Magnetic resonance imaging of partial temporomandibular joint disc displacement. J Oral Maxillofac Surg 1989;47:25-29. Kettunen JA, Kujala UM, Raty H, Videman T, Sarna S, Impivaara O, Koskinen S. Factors associated with hip joint rotation in former elite athletes. Br J Sports Med 2000;34:44-48. Kircos LT, Ortendahl DA, Mark AS, Arakawa M. Magnetic resonance imaging of the TMJ disc in asymptomatic volunteers. J Oral Maxillofac Surg. 1987; 45:852-854. Klemetti E, Vainio P, Kroger H. Craniomandibular disorders and skeletal mineral status. J Craniomandib Pract 1995;13:89-92. Larsson L-G, Baum J, Mudholkar GS. Hypermobility: features and differential incidence between the sexes. Arthritis Rheum 1987;30:1426-1430. Lu PW, Briody JN, Ogle GD, et al. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 1994;9:1451-1458. Lunt M, Masaryk P, Scheidt-Nave C, Nijs J, Poor G, Pols H, Falch JA, Hammermeister G, Reid DM, Benevolenskaya L, Weber K, Cannata J, O’Neill TW, Felsenberg D, Silman AJ, Reeve J. The effects of lifestyle, dietary daily intake and diabetes on bone density and vertebral deformity prevalence:The EVOS study. Oateoporos Int 2001;12:688-698. Magnusson T, Egermark-Eriksson I, Carlsson GE. Five-year longitudinal study of signs and symptoms of mandibular dysfunction in adolescents. J Craniomandib Pract 1986;4:338-344. Mazess RB, Barden HS. Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 1991;53:132-142. Nannmark U, Sennerby L, Haraldson T. Macroscopic, microscopic and radiologic assessment of the condylar part of the TMJ in elderly subjects. An autopsy study. Swed Dent J 1990;14:163-169. Nebbe B, Brooks SL, Hatcher D, Hollender LG, Prasad NGN, Major PW, Magnetic resonance imaging of the temporomandibular joint: interobserver agreement in subjective classification of disc status. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000;90:102-107. Nicol AC. Measurement of joint motion. Clin Rehabil 1989;3:1-9. Nilner M, Lassing S-A. Prevalence of functional disturbances and diseases of the stomatognathic system in 7-14 years olds. Swed Dent J 1981;5:173-187. Osterberg T, Carlsson G. Symptoms and signs of mandibular dysfunction in 70-year-old men and women in Gothenburg, Sweden. Commun Dent Oral Epidemiol 1979;7:315-321. Paesani D, Westesson P-L, Hatala MP, Tallents RH, Kurita K. Prevalence of TMJ internal derangement in patients with craniomandibular disorders. Am J Orthod Dentofac Orthop, 1992a;101:41-47. Paesani D, Westesson P-L, Hatala MP, Tallents RH, Brooks SL, Arbor A. Accuracy of clinical diagnosis for TMJ internal derangement and arthrosis. Oral Surg Oral Med Oral Pathol, 1992b;73:360-363. Pietschmann P, Resch H, Peterlik M. Etiology and pathogenesis of osteoporosis. In Orthopaedic issues in osteoporosis Yuehuei H. CRC Press; 2003. p. 9-10. Pullinger AG, Seligman DA, TMJ osteoarthrosis: A differentiation of diagnostic subgroups by symptom history and demographics. J Craniomandibular Disord Facial Oral Pain 1987;1:251. Pullinger AG, Seligman DA, Solberg WK. Temporomandibular disorders. Part I: Functional status, dentomorphologic features, and sex differences in a nonpatient population. J Prosthet Dent 1988;59:228-235. Reid IR, Ames R, Evans MC, Sharpe S, Gamble G, France JT, Lim TMT, Cundy TF. Determinants of total body and regional bone mineral density in normal postmenopausal women-a key role for fat mass. J Clin Endocrinol Metab 1992a;75:45-51. Reid IR, Plank LD, Evans MC. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 1992b;75:779-782. Reid IR, Legge M, Stapleton JP, Evans MC, Grey AB. Regular exercise dissociates fat mass and bone density in premenopausal women. J Clin Endocrinol Metab 1995;80:1764-1768. Sabatier JP, Guaydier-Souquieres G, Laroche D, et al. Bone mineral acquisition during adilescence and early adulthood: a study in 574 healthy females 10-24 years of age. Osteoporos Int 1996;6:141-148. Scapino RP, Mills DK. Disc displacement internal derangements. In Science and practice of occlusion. McNeill C. Illinoois: Quintessence;1997. p. 220-234. Shiau YY, Chang C. An epidemiological study of temporomandibular disorders in university students of Taiwan. Community Dent Oral Epidemiol 1992;20:43-47. Slater JJRH, Lobbezoo F, Chen YJ, Naeije M. A comparative study between clinical and instrumental methods for the recognition of internal derangements with a clicking sound on condylar movement, J Orofac Pain 2004;18:138-147. Solberg WK, Hansson TL, Nordstrom B. The temporomandibular joint in young adults at autopsy: a morphologic classification and evaluation. J Oral Rehabil 1985;12:303-321. Stewart CL, Standish SM. Osteoarthriris of the TMJ in teenaged females: report of cases. J Am Dent Ass 1983;106:638-640. Tasaki MM, Westesson P-L. Temporomandibular joint: diagnostic accuracy with sagittal and coronal MR imaging. Radiol, 1993a;186:723-729. Tasaki MM, Westesson P-L, Raubertas RF. Observer variation in interpretation of magnetic resonance images of the temporomandibular joint. Oral Surg Oral Med Oral Pathol, 1993b;76:231-234. van Hemert AM, Birkenhager JC, de Jong FH, Vandenbroucke JP, Valkenburg HA. Sex hormone binding globulin in postmenopausal women: A predictor of osteoporosis superior to endogenous osteogens. Clin Endocrinol 1989;31:499-509. Wanman A, Agerberg G. Two-year longitudinal study of signs of mandibular dysfunction in adolescents. Acta Odontol Scand 1986;44:333-342. Warner JJP, Boardman III ND. Anatomy, Biomechanics, and pathophysiology of glenohumeral instability. In The unstable shoulder. Warren RF, Craig EV, Altchek DW. Philadelphia: Lippincott-Raven Publishers, 1999. p. 51-52. Watkins MA, Riddle DL, Lamb RL, Personius WJ. Reliability of goniometric measurements and visual estimates of knee range of motion obtained in a clinical setting. Phys Ther 1991;71:15-21. Westesson PL, Rohlin M. Internal derangement related to osteoarthrosis in temporomandibular joint autopsy specimens. Oral Surg 1984;57:17-22. Westesson PL. Structural hard-tissue changes in temporomandibular joints with internal derangement. Oral Surg Oral Med Oral Pathol 1985;59:220-224. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group. WHO Technical Report Series. WHO, Geneva. 1994. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35048 | - |
| dc.description.abstract | 實驗目的:
顳顎關節內部紊亂與關節盤異位有關,由核磁共振影像顯示異位的關節盤其位置與型態會隨著時間而改變,造成不同程度的運動障礙,範圍從單純的關節聲響到張口受限。然而顳顎關節的內部結構紊亂與臨床功能障礙之間的關聯性很低,而內部的結構紊亂應該被當成是診斷的標準,所以在本實驗中顳顎關節結構紊亂的鑑定及分類,都是經由核磁共振影像的判讀來確定。 對於顳顎關節結構紊亂及與其合併產生的退行性關節疾病,其盛行率女性高於男性,而且好患年齡層可降低到青春期。對於這類異位的關節盤,關節盤韌帶應該先損害,接著才是關節盤的移位,所以我們假設全身性或局部性的關節鬆弛,可能是造成顳顎關節結構紊亂的致病因子,由文獻中得知經由測量全身性關節運動範圍並無法得到與顳顎關節結構紊亂關係一致的結果,其中原因可能包括他們都是以臨床功能障礙來當成判斷顳顎關節結構紊亂的診斷標準,量測全身性關節運動範圍方法不一致或是缺少對照組。此外經由顳顎關節動態核磁共振影像,可見在一個連續的張口運動中,不可復位的關節盤會持續壓迫及摩擦下顎髁骨,我們假設在關節盤與下顎髁骨間的這種不利接觸的機械作用將會引發骨骼變性,如果髁骨的本身機械強度低,則可能傾向於髁骨破壞。 因為顳顎關節結構紊亂及與其合併產生的退行性關節疾病呈現獨特的人口統計學分佈,我們假設有顳顎關節結構紊亂的年輕女性,可能起因於肌肉骨骼系統的不穩定性,所以在本篇論文中,我們評估幾種可代表肌肉骨骼系統不穩定性的參數,包括全身性關節的運動範圍、骨密度及體質指數等,探究其與顳顎關節結構紊亂之間的相關性。 實驗方法: 這是一個橫段面性的實驗,實驗組包括66位病患(均為女性),他們的顳顎關節在核磁共振影像中顯示為結構紊亂,控制組包括30位年齡相符的無症狀女性(平均年齡為23.2 ± 2.6 歲),他們的顳顎關節於核磁共振影像中顯示為正常,歸為正常組。根據核磁共振影像再將實驗組分為兩組,一組為不可回復的關節盤異位組 (50 人,平均年齡為22.6 ± 2.7 歲),包括至少一個顳顎關節為不可回復的關節盤異位;另一組為可回復的關節盤異位組 (16人,平均年齡為22.3 ± 2.7 歲),包括至少一個顳顎關節為可回復的關節盤異位,而無任一顳顎關節為不可回復的關節盤異位。對於評估全身性關節鬆弛度,我們量測第五手指的伸展(被動性)、手腕向內彎曲後手拇指與前臂的貼和程度(被動性)、手肘伸展(主動性)、膝關節伸展(主動性) 、軀幹前下彎(主動性)及踝關節屈曲(主動性)。同時也量測代表全身的骨密度(包括腰椎、全髖及股頸部)及體質指數(體重/身高2) (公斤/公尺2)。統計方法使用單因子變異數分析、皮爾森線性相關分析、卡方統計及邏輯式回歸分析。 實驗結果: 左側膝關節伸展及軀幹前下彎,在正常組 (分別為 -0.9 度及23.5 公分) 顯著小於不可回復的關節盤異位組 (分別為2.3 度及29.1 公分) (p< 0.05, ANOVA),其餘的關節伸展或屈曲程度,在正常組與顳顎關節結構紊亂組彼此之間,並無顯著差異 (p> 0.05, ANOVA)。腰椎及全髖骨密度在正常組 (1.002 g/cm2) 顯著大於不可回復的關節盤異位組 (0.924 g/cm2) (p< 0.05, ANOVA)。體質指數在正常組 (20.7 kg/m2) 顯著大於可回復的關節盤異位組 (19.4 kg/m2)及不可回復的關節盤異位組 (18.9 kg/m2) (p< 0.05, ANOVA)。左右兩側全身性關節運動範圍的相關性很高 (相關係數從手肘伸展的0.723到踝關節屈曲的0.889),例外者為具弱相關的膝關節伸展 (相關係數為0.520)。左右兩側第五手指伸展與手拇指-前臂貼和程度之間具有弱負相關性 (相關係數從 -0.269 到 –0.414)。 左右兩側手拇指-前臂貼和程度與踝關節屈曲間有弱正相關 (相關係數從0.320 到0.372)。利用邏輯式回歸模型,以體質指數及腰椎骨密度當作自變數,其正確預測正常組的百分比為56.7%,而正確預測顳顎關節結構紊亂組的百分比為92.4%。 結論: 與顳顎關節正常者相比較,患有顳顎關節不可回復關節盤異位者,將會有較高的機會,擁有前下彎時較僵硬的軀幹,較低的體質指數及較低的腰椎骨密度。 | zh_TW |
| dc.description.abstract | Objectives:
Temporomandibular joint (TMJ) internal derangement (ID) is believed to be associated with the displaced or misaligned disc. MRI Image evidences have indicated that the position as well as the morphology of the displaced discs could change over time and resulted in varied degrees of movement interferences, ranging from simple joint noise to permanent mouth opening limitation. However, the relationship between the structural derangement and functional derangement of the TMJ was low and the structural TMJ derangement should be used as the diagnostic gold standard. Therefore, in this study the TMJ ID was defined as the structural TMJ derangement according to MRI findings. Females have higher prevalence of TMJ ID and the ID associated degenerative joint disease (DJD) than males have. These differences were noticeable as early as in the age of adolescents. For the misaligned discs, impairment of the disc attachments was supposed to be occurred even prior to the disc displacement. Therefore, ligament laxity, systemically or locally, was hypothesized as a risk factor predisposing to systemic joint instability and the TMJ ID. Most clinical trials by measuring the range of motion (ROM) of single or multiple joints had no consistent results to support this hypothesis. Since the functional derangement is not able to represent the structural derangement, the measuring method of ROM was not consistent or the control group was usually missing. True dynamic TMJ MRI has revealed that the condyle pressed/rubbed with the non-reduced disc continuously during mouth opening. The unfavorable contact mechanics between the condyle and the misaligned disc was hypothesized to initiate the degeneration. If the mechanical strength of the bony counterparts was low, they might prone to be destructed. Because the ID and DJD of the TMJ showed a unique demographic distribution, we hypothesized that young female patients having the structural TMJ derangement might be attributed to instability of the musculoskeletal system. To test this hypothesis, we tried to evaluate the relationship between certain corporal parameters, which might represent the instability of the musculoskeletal system, including range of motion (ROM) of body joints, bone mineral density (BMD), and body mass index (BMI) etc., and structural TMJ derangement, which was diagnosed and graded according to their manifestations revealed by MRI. Materials and methods In this cross-sectional study, 66 female subjects, whose TMJs were proved with MRI to have structural derangement, have been selected as experimental group to participate in this study. Thirty age-matched female asymptomatic subjects (mean age 23.1 ± 2.6 Y/O) whose TMJs were also normal revealed by MRI, were included as the control and named as Normal group. According to the MRI, the experimental group were further divided into 2 subgroups, namely disc displacement without reduction (DDw/oR) (50 subjects, mean age 22.6 ± 2.7 Y/O) and disc displacement with reduction (DDwR) (16 subjects, mean age 22.3 ± 2.7 Y/O). ROM of the fifth finger extension, thumb apposition, elbow extension, knee extension, trunk flexion, and ankle dorsal flexion, were measured to assess the body joint hypermobility. BMD of lumbar spines, total hip, and femoral neck and BMI (weight / height2) (kg/m2) were also measured. ANOVA, Pearson’s linear correlation, chi-square test, and binary logistic regression analysis were used for statistic analyses. Results: ROM of the individual measured joints, except the left knee extension and trunk flexion, is not significant difference among Normal, DDwR, and DDw/oR groups (p> 0.05, ANOVA). The degrees of left knee extension and trunk flexion of Normal group (-0.9 degree and 23.5 cm, respectively) were significantly lower than that of DDw/oR group (2.3 degree and 29.1 cm) (p<0.05, ANOVA). BMD of lumbar and total hip were significantly higher in Normal group (1.002 g/cm2) than that of DDw/oR group (0.924 g/cm2) (p< 0.05, ANOVA). BMI of Normal group (20.7 kg/m2) were significantly higher than those of DDwR (19.4 kg/m2) and DDw/oR (and 18.9 kg/m2) (p< 0.05, ANOVA). There were strong positive correlations between right and left joint flexibility (from r= 0.723 for elbow extension to r= 0.889 for ankle dorsal flexion) except knee extension (r= 0.520). There were weak negative correlations between the fifth finger extension and thumb apposition of both hands (r= -0.269 to –0.414). There were weak positive correlation between both side thumb apposition and ankle dorsal flexions (r= 0.320 to 0.372). There was a moderate to high percentage of correct in prediction of Normal (56.7%) and ID (92.4 %) with logistic regression model on variables of BMI and lumbar BMD. Conclusion: Compared with subjects with normal TMJ, patients with DDw/oR will have a higher chance to possess stiff trunk to flexion, lower BMI and lower lumbar BMD. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:39:37Z (GMT). No. of bitstreams: 1 ntu-94-P91422007-1.pdf: 670583 bytes, checksum: d24fc62b6397352b2b55cd218450a4ce (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Chinese abstract ……………………………………………… i
English abstract ……………………………………………… v Contents ……………………………………………………… viii Legends of Figures …………………………………………… xi Titles of Tables ………………………………………………… xii Chapter I Introduction I. Background ………………………………………………………… 1 II. Aims of this study …………………………………………………… 3 Chapter II Literature review I. Internal derangement of TMJ and degenerative joint disease … 5 II. Diagnosis of structural TMJ derangement ……………………… 6 III. Joint hypermobility and generalized joint hypermobility ………… 8 IV. Relationship among condylar mobility, TMJ ID and generalized joint hypermobility ………………………………………………… 12 V. Bone mineral density (BMD) ……………………………………… 13 Chapter III Materials and Methods I. Subjects selection ………………………………………………… 16 II. MRI scanning ……………………………………………………… 16 III. MRI Interpretation and diagnosis of TMJ structural derangement ……………………………………………………… 18 IV. Measuring the ROM of body joints and generalized joint hypermobility …………………………………………………… 19 V. Bone mineral density and body mass index …………………… 21 VI. Statistical analyses ……………………………………………… 22 Chapter IV Results I. Subject description ……………………………………………… 23 II. ROM of body joints and hypermobile joints …………………… 23 III. Bone mineral density …………………………………………… 25 IV. Body weight and Body mass index …………………………… 26 V. Logistic regression model ……………………………………… 27 Chapter V Discussion I. Subject distribution ……………………………………………… 29 II. ROM of body joints and hypermobile joints …………………… 30 III. Bone mineral density …………………………………………… 33 IV. Body mass index ………………………………………………… 35 V. Body weight ……………………………………………………… 36 Chapter VI Summary I. Conclusion ………………………………………………………… 38 II. Implication of this study …………………………………………… 38 III. Study of future ……………………………………………………… 38 Figures ………………………………………………………… 40 Tables ………………………………………………………… 42 References …………………………………………………… 55 Appendix Appendix 1 Measurement landmarks of body joints with goniometer 65 Appendix 2 Nine-point Beighton hypermobile score ………………… 66 Appendix 3 Diagnostic criteria for benign joint hypermobility syndrome (BJHS) ……………………………………… 67 | |
| dc.language.iso | en | |
| dc.subject | 顳顎關節結構紊亂 | zh_TW |
| dc.subject | 顳顎關節內部紊亂 | zh_TW |
| dc.subject | 全身性關節運動範圍 | zh_TW |
| dc.subject | 體質指數 | zh_TW |
| dc.subject | 骨密度 | zh_TW |
| dc.subject | BMI | en |
| dc.subject | BMD | en |
| dc.subject | ROM of body joints | en |
| dc.subject | Structural derangement | en |
| dc.subject | Internal derangement | en |
| dc.title | 全身關節不穩定性與顳顎關節結構紊亂關係之探討 | zh_TW |
| dc.title | Systemic Joint instability and Temporomandibular Joint Structural Derangement | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳韻之(Yunn-Jy Chen) | |
| dc.contributor.oralexamcommittee | 施庭芳(Ting-Fang Shih),許明倫,王若松(Juo-Song Wang) | |
| dc.subject.keyword | 顳顎關節內部紊亂,顳顎關節結構紊亂,全身性關節運動範圍,體質指數,骨密度, | zh_TW |
| dc.subject.keyword | Internal derangement,Structural derangement,ROM of body joints,BMI,BMD, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-08-03 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 654.87 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
