請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35029
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張明富(Ming-Fu Chang) | |
dc.contributor.author | Li-Yu Li | en |
dc.contributor.author | 李麗玉 | zh_TW |
dc.date.accessioned | 2021-06-13T06:39:10Z | - |
dc.date.available | 2016-10-05 | |
dc.date.copyright | 2011-10-05 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-25 | |
dc.identifier.citation | 1.Artero-Castro, A., J. Castellvi, A. Garcia, J. Hernandez, S. R. Cajal, and M. E. Lleonart. 2011. Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic tumors. Hum Pathol 42:194-203.
2.Banerjee, R. 2006. B12 trafficking in mammals: A for coenzyme escort service. ACS Chem Biol 1:149-59. 3.Banerjee, R., and S. W. Ragsdale. 2003. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem 72:209-47. 4.Bangert, I., F. Tumulka, and R. Abele. 2011. The lysosomal polypeptide transporter TAPL: more than a housekeeping factor? Biol Chem 392:61-6. 5.Beedholm-Ebsen, R., K. van de Wetering, T. Hardlei, E. Nexo, P. Borst, and S. K. Moestrup. 2010. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. Blood 115:1632-9. 6.Bonifacino, J. S., and L. M. Traub. 2003. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395-447. 7.Borths, E. L., B. Poolman, R. N. Hvorup, K. P. Locher, and D. C. Rees. 2005. In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake. Biochemistry 44:16301-9. 8.Cadieux, N., C. Bradbeer, and R. J. Kadner. 2000. Sequence changes in the ton box region of BtuB affect its transport activities and interaction with TonB protein. J Bacteriol 182:5954-61. 9.Casey, J. R., S. Grinstein, and J. Orlowski. 2010. Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50-61. 10.Christensen, J. H., M. N. Nielsen, J. Hansen, A. Fuchtbauer, E. M. Fuchtbauer, M. West, T. J. Corydon, N. Gregersen, and P. Bross. 2010. Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15:851-63. 11.Chu, R. C., J. A. Begley, P. D. Colligan, and C. A. Hall. 1993. The methylcobalamin metabolism of cultured human fibroblasts. Metabolism 42:315-9. 12.Dali-Youcef, N., and E. Andrès. 2009. An update on cobalamin deficiency in adults. QJM 102:17-28. 13.Dobson, C. M., T. Wai, D. Leclerc, H. Kadir, M. Narang, J. P. Lerner-Ellis, T. J. Hudson, D. S. Rosenblatt, and R. A. Gravel. 2002. Identification of the gene responsible for the cblB complementation group of vitamin B12-dependent methylmalonic aciduria. Hum Mol Genet 11:3361-9. 14.Dobson, C. M., T. Wai, D. Leclerc, A. Wilson, X. Wu, C. Dore, T. Hudson, D. S. Rosenblatt, and R. A. Gravel. 2002. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci U S A 99:15554-9. 15.Drennan, C. L., S. Huang, J. T. Drummond, R. G. Matthews, and M. L. Lidwig. 1994. How a protein binds B12: A 3.0 A X-ray structure of B12-binding domains of methionine synthase. Science 266:1669-74. 16.Eichel, J., J. C. Gonzalez, M. Hotze, R. G. Matthews, and J. Schroder. 1995. Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus roseus). Molecular characterization, regulation, heterologous expression, and enzyme properties. Eur J Biochem 230:1053-8. 17.Fedosov, S. N., C. B. Grissom, N. U. Fedosova, S. K. Moestrup, E. Nexo, and T. E. Petersen. 2006. Application of a fluorescent cobalamin analogue for analysis of the binding kinetics. A study employing recombinant human transcobalamin and intrinsic factor. FEBS J 273:4742-53. 18.Finkler, A. E., and C. A. Hall. 1967. Nature of the relationship between vitamin B12 binding and cell uptake. Arch Biochem Biophys 120:79-85. 19.Froese, D. S., and R. A. Gravel. 2010. Genetic disorders of vitamin B metabolism: eight complementation groups--eight genes. Expert Rev Mol Med 12:e37. 20.Froese, D. S., S. Healy, M. McDonald, G. Kochan, U. Oppermann, F. H. Niesen, and R. A. Gravel. 2010. Thermolability of mutant MMACHC protein in the vitamin B12-responsive cblC disorder. Mol Genet Metab 100:29-36. 21.Froese, D. S., J. Zhang, S. Healy, and R. A. Gravel. 2009. Mechanism of vitamin B12-responsiveness in cblC methylmalonic aciduria with homocystinuria. Mol Genet Metab 98:338-43. 22.Fuerst, T. R., E. G. Niles, F. W. Studier, and B. Moss. 1986. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122-6. 23.Gailus, S., W. Hohne, B. Gasnier, P. Nurnberg, B. Fowler, and F. Rutsch. 2010. Insights into lysosomal cobalamin trafficking: lessons learned from cblF disease. J Mol Med 88:459-66. 24.Ghosh, J. C., M. D. Siegelin, T. Dohi, and D. C. Altieri. 2010. Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 70:8988-93. 25.Gravel, R. A., M. J. Mahoney, F. H. Ruddle, and L. E. Rosenberg. 1975. Genetic complementation in heterokaryons of human fibroblasts defective in cobalamin metabolism. Proc Natl Acad Sci U S A 72:3181-5. 26.Grzyb, J., D. Latowski, and K. Strzalka. 2006. Lipocalins - a family portrait. J Plant Physiol 163:895-915. 27.Hall, C. A., and A. E. Finkler. 1963. A Second Vitamin B12-Binding Substance in Human Plasma. Biochim Biophys Acta 78:234-6. 28.Hannibal, L., J. Kim, N. E. Brasch, S. Wang, D. S. Rosenblatt, R. Banerjee, and D. W. Jacobsen. 2009. Processing of alkylcobalamins in mammalian cells: A role for the MMACHC (cblC) gene product. Mol Genet Metab 97:260-6. 29.Hansen, M., and M. Fràter-Schröder. 1987. Human transcobalamin isopeptides: Separation by isoelectric focusing and by polyacrylamide gel electrophoresis. ELECTROPHORESIS 8:221-223. 30.Hansen, M., and E. Nexo. 1989. Isoelectric focusing of apo- and holo-transcobalamin present in human blood. Identification of a protein complexing with transcobalamin. Biochim Biophys Acta 992:209-14. 31.Hodgkin, D. C., J. Kamper, M. Mackay, J. Pickworth, K. N. Trueblood, and J. G. White. 1956. Structure of vitamin B12. Nature 178:64-6. 32.Hoefler, G., M. Forstner, M. C. McGuinness, W. Hulla, M. Hiden, P. Krisper, L. Kenner, T. Ried, C. Lengauer, R. Zechner, and et al. 1994. cDNA cloning of the human peroxisomal enoyl-CoA hydratase: 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme and localization to chromosome 3q26.3-3q28: a free left Alu Arm is inserted in the 3' noncoding region. Genomics 19:60-7. 33.Horwich, A. L., W. A. Fenton, E. Chapman, and G. W. Farr. 2007. Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115-45. 34.Idriss, J. M., and A. J. Jonas. 1991. Vitamin B12 transport by rat liver lysosomal membrane vesicles. J Biol Chem 266:9438-41. 35.Kadner, R. J., and G. L. Liggins. 1973. Transport of vitamin B12 in Escherichia coli: genetic studies. J Bacteriol 115:514-21. 36.Kim, J., C. Gherasim, and R. Banerjee. 2008. Decyanation of vitamin B12 by a trafficking chaperone. Proc Natl Acad Sci U S A 105:14551-4. 37.Krautler, B. 2005. Vitamin B12: chemistry and biochemistry. Biochem Soc Trans 33:806-10. 38.Lerner-Ellis, J. P., J. C. Tirone, P. D. Pawelek, C. Dore, J. L. Atkinson, D. Watkins, C. F. Morel, T. M. Fujiwara, E. Moras, A. R. Hosack, G. V. Dunbar, H. Antonicka, V. Forgetta, C. M. Dobson, D. Leclerc, R. A. Gravel, E. A. Shoubridge, J. W. Coulton, P. Lepage, J. M. Rommens, K. Morgan, and D. S. Rosenblatt. 2006. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nat Genet 38:93-100. 39.Lettice, L. A., T. Horikoshi, S. J. Heaney, M. J. van Baren, H. C. van der Linde, G. J. Breedveld, M. Joosse, N. Akarsu, B. A. Oostra, N. Endo, M. Shibata, M. Suzuki, E. Takahashi, T. Shinka, Y. Nakahori, D. Ayusawa, K. Nakabayashi, S. W. Scherer, P. Heutink, R. E. Hill, and S. Noji. 2002. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad Sci U S A 99:7548-53. 40.Li, F., D. Watkins, and D. S. Rosenblatt. 2009. Vitamin B(12) and birth defects. Mol Genet Metab 98:166-72. 41.Lubke, T., P. Lobel, and D. E. Sleat. 2009. Proteomics of the lysosome. Biochim Biophys Acta 1793:625-35. 42.MacFarlane, A. J., C. A. Perry, H. H. Girnary, D. Gao, R. H. Allen, S. P. Stabler, B. Shane, and P. J. Stover. 2009. Mthfd1 is an essential gene in mice and alters biomarkers of impaired one-carbon metabolism. J Biol Chem 284:1533-9. 43.Manunta, M., L. Izzo, R. Duncan, and A. T. Jones. 2007. Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics II. Identification of endosomal and lysosomal compartments in HepG2 cells combining single-step subcellular fractionation with fluorescent imaging. J Drug Target 15:37-50. 44.Mato, J. M., M. L. Martinez-Chantar, and S. C. Lu. 2008. Methionine metabolism and liver disease. Annu Rev Nutr 28:273-93. 45.McIlvaine, T. C. 1921. A buffer solution for colorimetric comparison. J Biol Chem 49:183-186. 46.Minot, G. R., and W. P. Murphy. 1926. Treatment of pernicious anemia by a special diet. JAMA 87:470-476. 47.Moestrup, S. K., H. Birn, P. B. Fischer, C. M. Petersen, P. J. Verroust, R. B. Sim, E. I. Christensen, and E. Nexo. 1996. Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis. Proc Natl Acad Sci U S A 93:8612-7. 48.Morkbak, A. L., A. M. Hvas, Z. Lloyd-Wright, T. A. Sanders, O. Bleie, H. Refsum, O. K. Nygaard, and E. Nexo. 2006. Effect of vitamin B12 treatment on haptocorrin. Clin Chem 52:1104-11. 49.Noinaj, N., M. Guillier, T. J. Barnard, and S. K. Buchanan. 2010. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43-60. 50.Oltean, S., and R. Banerjee. 2005. A B12-responsive internal ribosome entry site (IRES) element in human methionine synthase. J Biol Chem 280:32662-8. 51.Padovani, D., and R. Banerjee. 2009. A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria. Proc Natl Acad Sci U S A 106:21567-72. 52.Plesa, M., J. Kim, S. G. Paquette, H. Gagnon, C. Ng-Thow-Hing, B. F. Gibbs, M. A. Hancock, D. S. Rosenblatt, and J. W. Coulton. 2011. Interaction between MMACHC and MMADHC, two human proteins participating in intracellular vitamin B metabolism. Mol Genet Metab 102:139-48. 53.Quadros, E. V., Y. Nakayama, and J. M. Sequeira. 2009. The protein and the gene encoding the receptor for the cellular uptake of transcobalamin-bound cobalamin. Blood 113:186-92. 54.Ravanel, S., B. Gakiere, D. Job, and R. Douce. 1998. The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95:7805-12. 55.Rickes, E. L., N. G. Brink, F. R. Koniuszy, T. R. Wood, and K. Folkers. 1948. Crystalline Vitamin B12. Science 107:396-7. 56.Rosenblatt, D. S., A. Hosack, N. V. Matiaszuk, B. A. Cooper, and R. Laframboise. 1985. Defect in vitamin B12 release from lysosomes: newly described inborn error of vitamin B12 metabolism. Science 228:1319-21. 57.Roth, J. R., J. G. Lawrence, and T. A. Bobik. 1996. Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137-81. 58.Rutsch, F., S. Gailus, I. R. Miousse, T. Suormala, C. Sagne, M. R. Toliat, G. Nurnberg, T. Wittkampf, I. Buers, A. Sharifi, M. Stucki, C. Becker, M. Baumgartner, H. Robenek, T. Marquardt, W. Hohne, B. Gasnier, D. S. Rosenblatt, B. Fowler, and P. Nurnberg. 2009. Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat Genet 41:234-9. 59.Rutsch, F., S. Gailus, T. Suormala, and B. Fowler. 2011. LMBRD1: the gene for the cblF defect of vitamin B metabolism. J Inherit Metab Dis 34:121-6. 60.Sakai, H., Y. Tanaka, M. Tanaka, N. Ban, K. Yamada, Y. Matsumura, D. Watanabe, M. Sasaki, T. Kita, and N. Inagaki. 2007. ABCA2 deficiency results in abnormal sphingolipid metabolism in mouse brain. J Biol Chem 282:19692-9. 61.Sleat, D. E., H. Zheng, M. Qian, and P. Lobel. 2006. Identification of sites of mannose 6-phosphorylation on lysosomal proteins. Mol Cell Proteomics 5:686-701. 62.Smith, E. L. 1948. Purification of anti-pernicious anaemia factors from liver. Nature 161:638. 63.Suormala, T., M. R. Baumgartner, D. Coelho, P. Zavadakova, V. Kozich, H. G. Koch, M. Berghauser, J. E. Wraith, A. Burlina, A. Sewell, J. Herwig, and B. Fowler. 2004. The cblD defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis. J Biol Chem 279:42742-9. 64.Tchorzewski, M., D. Krokowski, W. Rzeski, O. G. Issinger, and N. Grankowski. 2003. The subcellular distribution of the human ribosomal 'stalk' components: P1, P2 and P0 proteins. Int J Biochem Cell Biol 35:203-11. 65.Tibbetts, A. S., and D. R. Appling. 2010. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 30:57-81. 66.Van Veldhoven, P. P. 2010. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51:2863-95. 67.Vassiliadis, A., D. S. Rosenblatt, B. A. Cooper, and J. J. Bergeron. 1991. Lysosomal cobalamin accumulation in fibroblasts from a patient with an inborn error of cobalamin metabolism (cblF complementation group): visualization by electron microscope radioautography. Exp Cell Res 195:295-302. 68.Wang, Y. H., S. C. Chang, C. Huang, Y. P. Li, C. H. Lee, and M. F. Chang. 2005. Novel nuclear export signal-interacting protein, NESI, critical for the assembly of hepatitis delta virus. J Virol 79:8113-20. 69.Wiener, M. C. 2005. TonB-dependent outer membrane transport: going for Baroque? Curr Opin Struct Biol 15:394-400. 70.Willard, H. F., I. S. Mellman, and L. E. Rosenberg. 1978. Genetic complementation among inherited deficiencies of methylmalonyl-CoA mutase activity: evidence for a new class of human cobalamin mutant. Am J Hum Genet 30:1-13. 71.Wojnar, P., M. Lechner, P. Merschak, and B. Redl. 2001. Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display. J Biol Chem 276:20206-12. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35029 | - |
dc.description.abstract | 維生素B12,又稱為氰鈷胺,在哺乳類動物細胞中做為酵素反應的輔因子,協助執行甲硫胺酸(methionine)生合成及methylmalonyl-CoA與succinyl-CoA之間的異構化。然而,維生素B12在細胞內的代謝路徑大部分仍未知,只能從代謝缺失的病人中取得纖維母細胞進行研究。目前,已有八種代謝缺失的互補型被發現,命名為cblA-G及mut。LMBR1 domain containing 1 (lmbrd1)基因被認為是cblF的對應基因,該病症使得維生素B12累積在溶酶體內而不能被細胞所利用。lmbrd1基因會轉譯二種主要的蛋白質:全長540個胺基酸的LMBD1蛋白質,及由另一個啟動子轉錄轉譯而得具有467個胺基酸的異體蛋白質NESI (nuclear export signal-interacting protein)。NESI蛋白質由本實驗室首度發現,並證實它參與D型肝炎病毒大型抗原的核輸出過程,與D型肝炎病毒的組合有關。另一方面的研究則指出LMBD1蛋白質可能是維生素B12於溶酶體的輸出蛋白質。LMBD1蛋白質可能透過其突出於溶酶體內側的區段和維生素B12結合,或者辨認B12的結合蛋白質。
本篇研究的實驗目的在於分析LMBD1蛋白質是否可以直接結合維生素B12,或者藉由溶酶體中可以與LMBD1蛋白質結合的B12攜帶蛋白質,與B12產生間接的結合。為了尋找溶酶體中與LMBD1有交互作用的蛋白質,使用OptiPrep濃度梯度及超高速離心的方法分離溶酶體。使用專一性辨認接在LMBD1上的V5-tag的抗體進行免疫共沉澱,發現至少有三個以上的蛋白質專一性地與LMBD1結合。經LC-MS/MS鑑定其身分,發現都未曾有與維生素B12相關的研究被提出。因此其與B12的相關性尚待進一步確認。另外,對於LMBD1與維生素B12直接結合的假說,使用GST pull-down assay進行測試。初步結果發現不同長度LMBD1的GST融合蛋白質中,只有包含C端第383-540個胺基酸的融合蛋白質與MeCbl的結合與對照組有顯著差異。藉由維生素B12於血液中的結合蛋白質transcobalamin (TCII)與B12結合後,會增加等電點約0.4 pH單位的特性,進一步使用GST-MMACHC融合蛋白質做為正控制組,從非變性蛋白質瓊脂膠電泳中看到其與MeCbl結合後,產生band-shift的現象,確認此系統可做為測試LMBD1與維生素B12直接結合的方法。此外,最近的文獻報告認為cblC的對應蛋白質MMACHC,可能在協助LMBD1蛋白質運送維生素B12移出溶酶體的過程中,扮演一定的角色。使用GST pull-down assay確認GST-MMACHC融合蛋白質與細胞中LMBD1蛋白質的結合關係。LMBD1亦可pull-down細胞中的MMACHC。而使用MeCbl處理細胞後,發現LMBD1與MMACHC的結合會進一步被增強。由於MMACHC並不存在於溶酶體中,因此我們認為MMACHC可能做為細胞質中的受體蛋白質,接收來自於溶酶體LMBD1所輸出的維生素B12。 | zh_TW |
dc.description.abstract | Vitamin B12 (cobalamin) is a coenzyme that mediates enzymatic reactions for the methionine biosynthesis and the interconversion of methylmalonyl coenzyme A and succinyl coenzyme A in mammalian cells. However, the intracellular metabolism pathway of the cofactor is complicated and rarely revealed by clinical analyses of fibroblasts from patients with disorders of cobalamin metabolism. Currently, eight complementation groups, cblA-cblG and mut, which stand for different intracellular defects in vitamin B12 metabolism have been identified. LMBR1 domain containing 1 (lmbrd1) is the corresponding gene for cblF, a defect that causes accumulating free vitamin B12 in lysosomes. lmbrd1 gene encodes two major proteins, LMBD1 representing the full-length protein with 540 amino acid residues and the nuclear export signal-interacting protein (NESI) with 467 amino acid residues from an alternative promoter-drived transcript. NESI was first discovered in our laboratory and demonstrated to be involved in the nuclear export of the large hepatitis delta antigen (HDAg-L) and the assembly of hepatitis delta virus (HDV). On the other hand, others defined LMBD1 as a putative lysosomal cobalamin exporter. As an exporter, LMBD1 was proposed to either directly bind to cobalamin through its loops protruding into lysosomal compartment or to recognize a cobalamin-binding protein.
The specific aims of this study are to examine whether LMBD1 can directly bind to cobalamin, and to identify cobalamin carrier proteins that interact with LMBD1. To identify potential LMBD1-associated cobalamin carrier proteins, lysosomes were isolated from LMBD1-V5 overexpressed 293T cells through ultracentrifugation in OptiprepTM gradient and subjected to co-immunoprecipitation using the V5 antibody. Several cellular proteins were identified to specifically interact with LMBD1, but their functions associated with cobalamin need to be further studied. To examine the direct binding hypothesis, GST pull-down assay was performed. The preliminary data demonstrated a significantly higher binding capacity of MeCbl to the C-terminal LMBD1 than the GST control and the other LMBD1 subdomains. Based on an earlier study that demonstrated an increase of the isoelectric point (pI) of transcobalamin (TCII) for 0.4 pH unit when it bound to cobalamin in the bloodstream, a band-shift assay was performed using GST-MMACHC as a positive control. This system would help us to confirm the direct interaction between LMBD1 and cobalamin. Furthermore, MMACHC that is responsible for cblC type disorder may play a role in helping LMBD1 to export cobalamin out of lysosomes. Indeed, GST-MMACHC pulled-down LMBD1-V5 at a low pH condition, and vice versa. In addition, the interaction between LMBD1 and MMACHC could be enhanced by MeCbl treatment in vivo. Nevertheless, MMACHC locates in the cytosol instead of lysosome. These results suggest MMACHC as a cytosolic receptor protein that gets cobalamin exported out from the lysosome via LMBD1. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:39:10Z (GMT). No. of bitstreams: 1 ntu-100-R98442007-1.pdf: 3295847 bytes, checksum: 78baa4e2201dfa557094f57a958c0659 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 中文摘要.......................i
英文摘要.....................iii 縮寫表.........................v 緒論...........................1 材料來源.......................9 實驗方法......................13 實驗結果......................32 討論..........................39 圖表..........................46 參考文獻......................68 | |
dc.language.iso | zh-TW | |
dc.title | LMBD1蛋白質在協助維生素B12輸出溶酶體的角色 | zh_TW |
dc.title | The role of LMBD1 protein in vitamin B12 transport out of lysosome | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林淑華(Shu-Wha Lin),李芳仁(Fang-Jen Lee),詹迺立(Nei-Li Chan) | |
dc.subject.keyword | 維生素B12,氰鈷胺,溶酶,體, | zh_TW |
dc.subject.keyword | LMBD1,NESI,LMBRD1,vitamin B12,cblF, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-25 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 3.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。