Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35021
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林永松
dc.contributor.authorHsu-Chen Chengen
dc.contributor.author鄭旭成zh_TW
dc.date.accessioned2021-06-13T06:38:59Z-
dc.date.available2005-11-03
dc.date.copyright2005-08-11
dc.date.issued2005
dc.date.submitted2005-08-06
dc.identifier.citation[1] M. R. Garey and D.S. Johnson, Computers and Intractability─a Guide to the Theory of NP-Completeness, Freeman: New York, 1979.
[2] F. Kenji, O. Masataka and I. Katsuo, ”Integration of Multicast Routing and QoS Routing,” Proc. The 10th Annual Internet Society Conference, pp. 18-21, July 2000.
[3] E. Crawley, R. Nair, B. Rajagopalan, H. Sandick, 'A Framework for QoS-based Routing in the Internet', IETF RFC2386, Aug. 1998.
[4] S. Chen and K. Nahrstedt, “An Overview of Quality-of-Service Routing for the Next Generation High-Speed Network: Problems and Solutions,” IEEE Network, Special Issue on Transmission and Distribution of Digital Video, November/December 1998.
[5] J. Kleinberg, Y. Rabani and E. Tardos, “Fairness in Routing and Load Balancing,” Proc. the 40th Annual Symposium on Foundations of Computer Science, pp. 568-578, 1999.
[6] D. Ghosh, V. Sarangan and R. Acharya, “Quality-of-Service Routing in IP Networks,” IEEE Transactions on Multimedia, vol. 3, Issue 2, June 2001.
[7] Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia applications”, IEEE JSAC, vol. 14, pp. 1228-1234, Sept. 1996.
[8] F. Ergun, R. Sinha and L. Zhang, “QoS Routing with Performance-Dependent Costs”, Proc. IEEE INFOCOM 2000 , March, 2000.
[9] H. Fang, E. W. Zegura, “On Scalable QoS Routing: Performance Evaluation of Topology Aggregation,” Proc. IEEE INFOCOM 2000, May 2000.
[10] G. Apostolopoulos, R. Guérin, S. Kamat and S. K. Tripathi, “Quality of service based routing: a performance perspective,” ACM SIGCOMM Computer Communication Review, v.28 n.4, p.17-28, Oct. 1998.
[11] B. Wang and J. C. Hou, 'Multicast routing and its QoS extension: problems, algorithms, and protocols,' IEEE Network, vol. 14, no. 1, pp. 22-36, Jan./Fab. 2000.
[12] D. Waltzman, S. Deering, and C. Partridge, 'Distance vector multicast routing protocol,' IETF RFC 1075, Nov. 1988.
[13] J. Moy, 'Multicast extensions to OSPF,' IETF RFC 1584, Mar. 1994.
[14] A. Ballardie, 'Core based trees multicast routing architecture,' IETF RFC 2201, Sep. 1997.
[15] A. Ballardie, 'Core based trees (CBT version 2) multicast routing protocol specification,' IETF RFC 2189, Sep. 1997.
[16] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu, P. Sharma, and L. Wei, 'Protocol independent multicast-sparse mode (PIM-SM): protocol specification,' IETF RFC 2362, Jun. 1998.
[17] K. L. Calvert, E. W. Zegura and M. J. Donahoo, 'Core selection methods for multicast routing,' Proc. Int. Conf. Computer Communications and Networks, pp. 638-642, Jul. 1995.
[18] D. G. Thaler and C. V. Ravishankar, 'Distributed center-location algorithms,' IEEE JSAC, vol. 15, no. 3, pp. 291-303, Apr. 1997.
[19] S. J. Koh, M. K. Shin, J. H. Yi, J. H. Hahm and C. H. Park, 'Non-core based shared tree architecture for IP multicasting,' Electronics Letters, vol. 35, no. 11, 27th May 1999.
[20] D. Kosiur, IP multicasting: the complete guide to interactive corporate networks, John Wiley & Sons, 1998.
[21] Q. Zhu, M. Parsa and J. J. Garcia-Luna-Aceves, 'A source-bases algorithm for delay-constrained minimum-cost multicasting,' Proc. IEEE INFOCOM '95, pp. 377-385, 1995.
[22] G. N. Rouskas, and I. Baldine, 'Multicast routing with end-to-end delay and delay variation constraints,' IEEE JSAC, vol. 15, no. 3, Apr. 1997.
[23] X. Jia, 'A distributed algorithm of delay-bounded multicast routing for multimedia applications in wide area networks,' IEEE/ACM Transactions on Networking, vol. 6, no. 6, pp. 828-837, Dec. 1998.
[24] S. Chen, and K. Nahrstedt, 'Distributed quality-of-service routing in high-speed networks based on selective probing,' Tech. Report, Dep. of Computer Science, UIUC, 1998.
[25] J. Ignacio and P. Fraigniaud, “A survey of multicast protocols for Internet,” Proc. AlgoTel 2000, 2000.
[26] S. Ramanathan, 'Multicast Tree Generation in Networks with Asymmetric Links,' IEEE/ACM Trans. on Networking, vol.4, No.4, pp.558-568, Aug. 1996.
[27] F. Bauer and A. Varma, 'Distributed Algorithms for Multicast Path Setup in Data Networks,' IEEE/ACM Trans. on Networking, vol.4, No.2, pp.181-191, April 1996.
[28] L. Wei and D. Estrin, 'The Trade-Offs of Multicast Trees and Algorithms,' Proc. Third Int. Conference on Computer Communications and Networking, pp.17-24, 1994.
[29] Y. Tanaka and P.C. Huang, 'Multiple Destination Routing Algorithms,' IEICE Trans. on Communication, vol. E76-B, no.5, pp.544-552, May 1993.
[30] X. Jiang, 'Distributed Path Finding Algorithm for Stream Multicast,' Computer Communication, vol.16, no.12, pp.767-775, Dec. 1993.
[31] X. Jiang, 'Routing Broadband Multicast Streams,' Computer Communication, vol.15, no.1, pp.45-51, Jan./Feb., 1992.
[32] K. Bharathi-Kumar and J.M. Jaffe, 'Routing to Multiple Destinations in Computer Networks,' IEEE Trans. on Communication, vol.COM-31, no.3, pp.343-351, March, 1983.
[33] J. Lin and R.S. Chang, 'A Comparison of the Internet Multicast Routing Protocols,' Computer Communications, vol. 22, pp.144-155, 1999.
[34] T. Asaka, T. Miyoshi and Y. Tanaka, 'Dynamic Multicast Routing Algorithm Using Predetermined Path Search,' IEICE Trans. Communication, vol. E83-B, no.5, pp. 1128-1135, May, 2000.
[35] J. Cho and J. Breen, 'Analysis of the Performance of Dynamic Multicast Routing Algorithms,' Computer Communications, vol. 22, pp.667-674, 1999.
[36] S. Raghavan, G. Manimaran and C. S. R. Murthy, 'A Rearrangeable Algorithm for the Construction of Delay-Constrained Dynamic Multicast Trees,' IEEE/ACM Trans. on Networking, vol.7, no.4, Aug., 1999.
[37] W. Effelsberg and E. Muller-Menrad, 'Dynamic Join and Leave for Real-Time Multicast,' TR-93-056, International Computer Science Institute, Berkeley, October (1993).
[38] M. Imase and B. Waxman, 'Dynamic Steiner Tree Problem,' SIAM J. Discrete Math., vol. 4, no. 3, pp.369-384, August 1991.
[39] F. Aiguo and M. Gerla, 'Receiver-Initiated Multicasting with Multiple QoS Constraints,' Proc. IEEE INFOCOM 2000, vol. 1, pp.62-70, 2000.
[40] X. Li, M. H. Ammar and S. Paul, “Video multicast over the Internet,” IEEE Network, March/April 1999.
[41] M. Ghanbari, “Two-Layered Coding of Video Signals for VBR Networks,” IEEE JSAC, vol. 7, no. 5, pp. 771-781, June 1989.
[42] F. Kishino, K. Manabe, Y. Hayashi and H. Yasuda, “Variable Bit-Rate Coding of Video Signals for ATM Networks,” IEEE JSAC, vol.7, pp.801-806, June 1989.
[43] W. Li, “Overview of Fine Granularity Scalability in MPEG-4 video standard,” IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 301-317, Mar. 2001.
[44] W. Li, “Bit-Plane Coding of DCT Coefficients for Fine Granularity Scalability,” ISO/IEC JTC1/SC29/WG11, MPEG98/M3989, Oct. 1998.
[45] J. Liang, J. Yu, Y. Wang, M. Srinath and M. Zhou, “Fine Granularity Scalability Video Coding using Combination of MPEG4 Video Objects and Still Texture Objects,” ISO/IEC JTC1/SC29/WG11, MPEG98/M4025, Oct. 1998.
[46] W. Li, “Fine Granularity Scalability Using Bit-Plane Coding of DCT Coefficients,” ISO/IEC JTC1/SC29/WG11, MPEG98/M4204, Dec. 1998.
[47] N. F. Maxemchuk, “Video Distribution on Multicast Networks”, IEEE JSAC, vol. 15, no. 3, pp. 357-372, April 1997.
[48] M. Charikar, J. Naor, B. Schieber, “Resource Optimization in QoS Multicast Routing of Real-Time Multimedia,” IEEE/ACM Transactions on Networking, vol. 12, no. 2, pp. 340-348, April 2004.
[49] H.G. Perros and K.M. Elsayed, “Call admission control schemes: A review,” IEEE Communications Magazine, pp. 82-91, Nov. 1996.
[50] C. Cetinkaya and E. Knightly “Egress Admission Control”, Proc. INFOCOM 2000, Mar. 2000.
[51] K. Lai and M. Baker, “Measuring Link Bandwidths Using a Deterministic Model of Packet Delay,” Proc. SIGCOMM 2000, pp. 283-294, 2000.
[52] V. Fioriu and D. Towsley, “Call admission and resource reservation for multicast sessions,” Technical Report 95-17, University of Massachusetts, 1995.
[53] X. Jia, Y. Zhang, N. Pissinoun and S. Makkis “An Integrated Routing andAdmission Control Mechanism for Real-time Multicast Connection Establishment,” International Journal of Communication Systems, vol. 14, no. 3, pp 287-303, April 2001.
[54] E. Pagani and G. P. Rossi, “Distributed Bandwidth Broker for QoS Multicast Traffic”, Proc. 22nd IEEE ICDCS, Vienna, pp. 319-326, Jul. 2-5 2002.
[55] N. Tang, S. Tsui and L. Wang, “A survey of admission control algorithms,” Technical Report, December 1998.
[56] S. Jamin, P. B. Danzig, S. J. Shenker and L. Zhang, “A measurement-based admission control algorithm for integrated service packet networks,” IEEE/ACM Transactions on Networking, vol. 5, No. 1, Feb. 1997, pp. 56-70.
[57] Berger, A. W. and Whitt, W., “Effective bandwidths with priorities,” IEEE Transactions on Networking, vol. 6, no. 4, pp. 447, Aug. 1998.
[58] C. S. Chang and J. A. Thomas “Effective bandwidth in high-speed digital networks,” IEEE JSAC, vol. 13, no. 6, Aug. 1995.
[59] R. Guerin, A. Ahmadi, and M. Nagshineh, “Equivalent capacity and its applications to bandwidth allocation in high-speed networks,” IEEE JSAC, vol. 9, no. 7, Sep. 1991.
[60] D. Wu, Y. T. Hou, W. Zhu, T. Q. Zhang and J. Peha, “Streaming video over the Internet: approaches and directions,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 282-300, March 2001.
[61] G. Karlsson and M. Vetterli, “Packet video and its integration into the network architecture”, IEEE JSAC, vol. 7, pp. 739–751, 1989.
[62] E. Amir, S. McCanne and H. Zhang, “An application level video gateway,” Proc. ACM Multimedia, pp. 255-265, Nov. 1995.
[63] T. Turletti and J. C. Bolot, “Issues with multicast video distribution in heterogeneous packet networks”, Proc. the 6th International Workshop on Packet Video, pp. F3.1-F3.4, 1994.
[64] L. Zhang, S. Deering, D. Estrin, S. Shenker and D. Zappala, “RSVP: A new resource reservation protocol”, IEEE Network, vol. 7, pp. 8–18, 1993.
[65] P. Winter, “Steiner problem in networks: A survey,” Networks, pp. 129-167, 1987.
[66] F. K. Hwang, Steiner Tree Problems, Networks, pp. 55-89, 1992.
[67] M. L. Fisher, “The Lagrangian relaxation method for solving integer programming problems”, Management Science, vol. 27, pp. 1-18, 1981.
[68] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, ISBN0-13-027765-7, 1993.
[69] H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in graphs,” Math Japonica, vol. 6, pp. 573-577, 1980.
[70] A. M. Geoffrion, “Lagrangean relaxation and its uses in integer programming,” Math. Programming Study, vol. 2, pp. 82-114, 1974.
[71] M. Held and R. M. Karp, “The Traveling salesman problem and minimum spanning trees: Part I,” Operations Research, vol. 18, pp. 1138-62, 1970.
[72] C. Faloutsos, P. Faloutsos, and M. Faloutsos, “On power-law relationships of the Internet topology,” Proc. of the ACM SIGCOMM, Sept. 1999.
[73] A.-L. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286. pp. 509–512, Oct. 1999.
[74] D. J. Watt and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, pp. 440-442, June 1998.
[75] V. Batagelj and U. Brandes, “Efficient generation of large random networks,” Physical Review, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/35021-
dc.description.abstract隨著近年來傳輸與編碼技術的發展,有愈來愈多的多媒體應用被推出並廣泛使用,例如視訊會議與隨選視訊。大部份這些應用都需要大量的頻寬來同步傳輸多媒體資訊給許多的使用者,其中可能最有效率的方式就是透過群播網路來達到這個目標。在多媒體傳輸的環境中,由於使用者可能使用不同的傳輸技術與網際網路進行連接(例如撥接數據機、Cable modem或者xDSL…等),並且不同使用者對於品質的需求亦不相同。因為網路頻寬與使用者需求之差異,如何透過良好的設計架構與傳輸機制,有效率的利用頻寬並達到服務的彈性是個重要的研究議題。
由於高階視訊編碼技術與視訊閘道器的推出,當不同的使用者向傳輸端要求不同的品質視訊時,傳輸端只要將滿足最高頻寬需求的視訊,透過單一群播樹傳輸進行傳輸即可,這種群播技術稱為階層編碼群播技術或者多重速率群播技術。單一速率最小成本群播樹的問題就是大家熟知支史坦那樹問題,這是一個NP-Complete的問題,而多重速率群播樹問題將是比史坦那樹更複雜的問題。
在此論文中,我們將針對單一速率與多重速率群播樹之路由問題進行探討,使用數學模型來描述此類網路規劃與網路運作問題,並使用拉格蘭日鬆弛法作為基礎,以最佳化的方式提出適合的演算法。本論文的研究內涵與成果簡述如下:
*最小成本多重速率群播路由問題:同時考慮路由決策與多重群播技術下每個鏈結上所應傳輸之資料量,以求得最小成本傳輸群播樹。我們成功的將此問題以數學模型進行描述,並提出以最佳化為基礎的演算法。根據實驗的結果顯示,我們所提出的演算法較之前相關研究所提出之演算法優越。此外,我們亦針對在網路鏈結有容量限制下的多群組群播問題進行研究,並提出相關的演算法。
*單一速率與多重速率群播允入控制研究:傳統的演算法在計算是否允入群播群組時是以整個群組為單位,在此我們提出群組部分允入的作法來求得最大收入之群播路由指定與資源預留機制。所謂的部份允入是指在無法允入全部群播群組內之使用者時,系統會以最大收入為目標嘗試對於群組內的部份使用者提供服務,以充分使用網路資源並最大化系統營收。此外,我們也從長期收益最大化的觀點,提出及時性的群播允數控制機制,並針對允入控制決策時間與系統負載流量之間的關係進行研究。我們所提出的演算法分別在單一速率群播與多重速率群播上可達到186%與905%的改善。
*考慮使用行為之最小成本群播樹研究:在既定的群播群組成員中,由於使用者並不一定全時的在接收傳輸端的資訊,其接收的行為可以以機率來表示。若考慮使用者是否正在接收的行為,傳統的最小成本樹演算法並無法有效率的被應用。因此我們將此問題以數學模式來表示,並提出最佳化的演算法。根據實驗的結果,我們的演算法較傳統的最小成本數演算法可改善達到38%。
論文的最後,我們提出五個未來重要的延續研究議題,並根據本論文的研究成果明確地提出這些問題之數學模式供後續學者進行研究。這些議題包括:最小成本多速率多群播樹問題、最大使用者滿意度之多速率多群播樹問題、最大利潤多速率群播樹問題、考慮重新路由之多速率群播樹問題與考慮次群組行為之群播問題。
zh_TW
dc.description.abstractBased on recent developments in transmission and computing technologies, multimedia applications, such as the teleconferencing and video on demand, have already become achievable and are comprehensively and widely used. Nevertheless, most of these applications require a large amount of bandwidth to deliver multimedia information to multiple destinations simultaneously. One possible way to meet this requirement is via multicasting. Multimedia application environments are characterized by large bandwidth variations due to the heterogeneous access technologies of networks (e.g. analog modem, cable modem, xDSL, and wireless access etc.) and different receivers’ quality requirements. In video multicasting, the heterogeneity of the networks and destinations makes it difficult to achieve bandwidth efficiency and service flexibility. There are many challenging issues that need to be addressed in designing architectures and mechanisms for multicast data transmission.
Taking advantage of recent advances in video encoding and transmission technologies, either by a progress coder or video gateway, different destinations can request a different bandwidth requirement from the source. The source then only needs to transmit signals that are sufficient for the highest bandwidth destination into a single multicast tree.
In this dissertation, we study several multicast routing problems, which belong to both single-rate and multi-rate categories. Mathematical formulations are used to model the planning and operational problems, and Lagrangean relaxation techniques, based on the proposed mathematical formulations, are adopted to solve the network planning and operational problems. The scope and contributions of this dissertation are highlighted by the following.
For the min-cost multirate multicasting routing problem, we propose some heuristics to jointly determine the following decision variables: (1) the routing assignment; and (2) the maximum allowable traffic rate of each multicast user group through each link. We successfully model the traffic flow on the links for multi-rate multicasting, and the proposed optimization-based heuristic outperform than the heuristic proposed in the earlier researches. We also deal with the multi-group multicasting planning problem with a capacity constraint.
We also consider the call admission control issues for the single-rate and multi-rate multicasting. We consider the problem of maximum-revenue routing with a partial admission control mechanism. The mechanism means that the admission policy of a multicast group is not based on a traditional “all or none” strategy. Instead it considers accepting partial destinations for the requested multicast group. For a given network topology, a given link capacity, destinations of a multicast group, and the bandwidth requirement of each destination, we attempt to find a feasible routing solution to execute call admission control and apply resource reservation to maximize the revenue of the multicast trees. In addition, we propose a real-time model to deal with long term revenue analysis. The improvement is up to 186% better than the simple algorithm in single-rate transmission, and 905% in multi-rate transmission.
Furthermore, we address the problem of constructing a minimum cost multicast tree by considering dynamic user membership. The motivation of this is to create a mechanism for finding and evaluating the cost-efficiency of a multicast tree with a given network and a fixed set of group members. Unlike other minimum cost multicast tree algorithms, this problem consists of one multicast group of fixed members, where each destination member is dynamic and has a probability of being active, which is observed over some period of time. The improvement of our proposed algorithm is up to 38%.
Finally, we point out five challenging issues to be tackled in the future. We also proposed some feasible mathematical models to formulate these problems. These models are based on the research results of the dissertation.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:38:59Z (GMT). No. of bitstreams: 1
ntu-94-D87725002-1.pdf: 2387509 bytes, checksum: f7bf38dba3163bbd2d3fe9a4263a315a (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsCHAPTER 1 INTRODUCTION 1
1.1 OVERVIEW 1
1.2 RESEARCH SCOPE 3
CHAPTER 2 RESEARCH BACKGROUND 8
2.1 QOS ROUTING 8
2.2 QOS MULTICASTING 13
2.3 MULTIRATE MULTICASTING 18
2.5 LAGRANGEAN RELAXATION METHOD 25
2.6 NETWORK TOPOLOGIES FOR EXPERIMENTS AND SIMULATIONS 29
CHAPTER 3 MINIMUM-COST MULTIRATE MULTICASTING ROUTING PROBLEM 33
3.1 OVERVIEW 33
3.2 HEURISTICS OF MULTIRATE MULTIMEDIA MULTICASTING 36
3.2.1 Some Scenarios of the Modified T-M Heuristic 37
3.2.2 Enhanced Modified T-M Heuristic 39
3.3 THE MODEL 40
3.3.1 Problem Description 40
3.3.2 Mathematical Formulation 41
3.4 SOLUTION APPROACH 43
3.4.1 Lagrangean Relaxation 43
3.4.2 Getting Primal Feasible Solutions 46
3.5 COMPUTATIONAL EXPERIMENTS 47
3.6 CONCLUDING REMARKS 50
CHAPTER 4 CAPACITATED MINIMUM-COST MULTIRATE MULTICAST ROUTING PROBLEM 51
4.1 OVERVIEW 51
4.2 A SIMPLE HEURISTIC FOR LINK CONSTRAINED MULTIRATE MULTIMEDIA MULTICASTING 52
4.3 PROBLEM FORMULATION 53
4.3.1 Problem Description 53
4.3.2 Mathematical Formulation 55
4.4 SOLUTION APPROACH 56
4.4.1 Lagrangean Relaxation 56
4.4.2 Getting Primal Feasible Solutions 60
4.5 EXPERIMENTAL RESULTS 61
4.6 CONCLUDING REMARKS 64
CHAPTER 5 THE PARTIAL ADMISSION CONTROL PROBLEM OF SINGLE-RATE MULTICASTING 65
5.1 OVERVIEW 65
5.2 PROBLEM FORMULATION 66
5.3 SOLUTION PROCEDURE 70
5.3.1 Lagrangean relaxation 70
5.3.2 Getting primal feasible solutions 72
5.4 COMPUTATIONAL EXPERIMENTS 74
5.5 REAL-TIME ADMISSION CONTROL 77
5.5.1 A Real-time LR-based CAC algorithm 79
5.5.2 Performance metrics 81
5.5.3 Simulation Results 82
5.6 CONCLUDING REMARKS 95
CHAPTER 6 THE PARTIAL ADMISSION CONTROL PROBLEM OF MULTIRATE MULTICASTING 96
6.1 INTRODUCTION 96
6.2 PROBLEM FORMULATION 97
6.3 SOLUTION PROCEDURE 100
6.3.1 Lagrangean relaxation 100
6.3.2 Getting primal feasible solutions 103
6.4 COMPUTATIONAL EXPERIMENTS 105
6.5 REAL-TIME PARTIAL ADMISSION CONTROL FOR MULTIRATE MULTICASTING 108
6.5.1 A Real-time LR-based CAC algorithm 108
6.5.2 Performance metrics 109
6.5.3 Simulation Results 110
6.6 CONCLUDING REMARKS 122
CHAPTER 7 MINIMUM-COST MULTICAST ROUTING PROBLEM WITH THE CONSIDERATION OF DYNAMIC USER MEMBERSHIP 124
7.1 OVERVIEW 124
7.2 PROBLEM FORMULATION 126
7.2.1 Problem Description 126
7.2.2 Mathematical Formulation 127
7.3 SOLUTION APPROACH 128
7.3.1 Lagrangean Relaxation 128
7.3.2 Getting Primal Feasible Solutions 131
7.4 COMPUTATIONAL EXPERIMENTS 132
CHAPTER 8 CONCLUSION AND FUTURE WORK 136
8.1 SUMMARY 136
8.2 FUTURE WORK 137
8.2.1 Min-Cost Multi-tree Multirate Multicast Problem 137
8.2.2 Max-Revenue Multi-tree Multirate Multicast Problem 140
8.2.3 Max-Profit Multirate Multicast Problem 143
8.2.4 Routing Algorithms Considering Multirate Multicast Service and Traffic Rerouting 147
8.2.5 Considering Subgroup Behavior 151
REFERENCES 152
dc.language.isoen
dc.subject數學規劃zh_TW
dc.subject拉格蘭日鬆弛法zh_TW
dc.subject網路規劃zh_TW
dc.subject允入控制zh_TW
dc.subject史坦那樹zh_TW
dc.subject多階層編碼技術zh_TW
dc.subject多重速率群播zh_TW
dc.subject群播網路zh_TW
dc.subject網路最佳化zh_TW
dc.subjectOptimizationen
dc.subjectMulticast Networken
dc.subjectMulti-rate Multicastingen
dc.subjectLayered encodingen
dc.subjectSteiner Treeen
dc.subjectCall Admission Controlen
dc.subjectNetwork Planningen
dc.subjectLagrangean Relaxationen
dc.subjectMathematical Modelingen
dc.title多媒體網路群播演算法zh_TW
dc.titleMulticasting Algorithms in Multimedia Networksen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee孫雅麗,廖婉君,林盈達,呂俊賢
dc.subject.keyword群播網路,多重速率群播,多階層編碼技術,史坦那樹,允入控制,網路規劃,拉格蘭日鬆弛法,數學規劃,網路最佳化,zh_TW
dc.subject.keywordMulticast Network,Multi-rate Multicasting,Layered encoding,Steiner Tree,Call Admission Control,Network Planning,Lagrangean Relaxation,Mathematical Modeling,Optimization,en
dc.relation.page156
dc.rights.note有償授權
dc.date.accepted2005-08-09
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved