請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34988完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余家利 | |
| dc.contributor.author | Chia-Chee Chang | en |
| dc.contributor.author | 張家琦 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:38:15Z | - |
| dc.date.available | 2005-10-03 | |
| dc.date.copyright | 2005-10-03 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-09-26 | |
| dc.identifier.citation | 1、. Chivers PT, Prehoda KE, Raines RT. The CXXC motif: a rheostate in the active site. Biochemistry 36: 4061-6,1997.
2、Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 264:13963-6,1989. 3、Jones SW, Luk KC. Isolation of a chicken thioredox cDNA clone. Thioredox mRNA isdifferentially expressed in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts. J Biol Chem 263:9607-11,1988. 4、Holmgren A. Glutathione-dependent synthesis of deoxyribonecleotide. Characterization of the enzymatic mechanism of Escherachia coli glutaredoxin. J Biol Chem 254:3672-8,1979。 5、Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem Pharmacol 55:1747-58,1998 6、Berneburg M, grether-Beck S, Kurten V, Ruzicka T, Brivida K, Sies H, et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem 274: 15345-9, 1999. 7、Marchetti P, Decaudin D, Macho A, Zamzami N, Hirsch T, Susin SA, et al. Redox regulation of apoptosis: impact of thiol oxidation status on mitochondria function. 8、Mannerick B, Danielson UH. Glutathione transferase structure and catalytic activity. CRC Crit Rev Biochem 23: 281-334, 1988. 9、 Liu C-S, Chen H-W, Lii C-K, Tsai C-S, Kuo C-L, Wei Y-H. Alterations of plasma antioxidants and mitochondrial DNA mutation in hair follicles of smokers. Environ Mol Mutagen 40:168-74,2002. 10、 Maurice MM, Nakamura H, van der Voort EAM, van Vliet Staal FJT. Tak P-P. et al. Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. J Immunol 158:1458-65,1997. 11、54. Sebastia J, Cristofol R, Martin M, Rodriguez-Farre E, Sanfeliu C. Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. Cytometry (Part A) 51A: 16-25,2003. 12、47. Tarp U, Strengard-Pedersen K, Hansen JC, Thorling. Glutathione redox cycle enzymes and selenium in severe rheumatoid arthritis: lack of antioxidative response to selenium supplementation in polymorpho- nuclear leukocytes. Ann Rheum Dis 51:1044-9,1992. 13、. Bazzichi I, Ciompi ML, Betti L, Rossi A, Melchiorre D, Fiorini M, et al. Impaired glutathione reductase activity and levels of collagenase and elastase in synovial fluid in rheumatoid arthritis. Clin Exp Immunol 20:761-6,2002. 14、. Maurice MM, Nakamura H, van der Voort EAM, van Vliet Staal FJT. Tak P-P. et al. Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. J Immunol 158:1458-65,1997. 15、56. Marchetti P, Decaudin D, Macho A, Zamzami N, Hirsch T, Susin SA, et al. Redox regulation of apoptosis: impact of thiol oxidation status on mitochondria function. 16、 Liu C-S, Chen H-W, Lii C-K, Tsai C-S, Kuo C-L, Wei Y-H. Alterations of plasma antioxidants and mitochondrial DNA mutation in hair follicles of smokers. Environ Mol Mutagen 40:168-74,2002. 17. Nakamura J, Bannai S. Glutathione alters the mode of calcium-mediated regulation of adenyl cyclase in membranes from mouse brain. Biochim Biophys Acta 1339: 239-46, 1997. 18. Zable AC, Fevero TG, Anramson JJ. Glutathione modulates ryanodine receptor from skeletal muscle sacroplasmic reticulum. Evidence for redox regulation of the Ca2+ release mechamism. J Biol Chem 272:7069-77,1997. 19. Campbell DL, Stamler JS, Strauss HC. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothrols. J Gen Physiol 108: 277-93,1996 20. Kourie JI. A redox O2 sensor modulates the SR Ca2+ countercurrent through voltage and Ca 2+-dependent Cl- channels. Am J Physiol 272: C324-332, 1997. 21. Sen CK, Kolosova I, Hanninen O, Orlov SN. Inward potassium transport systems in skeletal muscle derived cells are highly sensitive to oxidant exposure. Free Radic Biol Med 18:795-800,1995. 22. Schenk H. Vogt M, Droge W, Schulze-Osthoff K. Thioredoxin as a patent costimulus of cytokine expression. J Immunol 156:765-71,1996. 23. Zhang JG, Matthecus JM, Ward LD, Simpson RJ. Disruption of the disulfide bonds of recombinant murine interleukin-6 induces formation of a partially unfolded state. Biochemistry 36:2380-9,1997. 24. Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-β1. Mol Endocrinol 10:1077-83,1996. 25. Epsosito F, Cuccovillo F, Vanonic M, Cimino F, Anderson CW, Appella E, et al. Redox mediated regulation of p21 expression involves a post-transcriptional mechanism and activation of the mitogen activated protein kinase pathway. Eur J Biochem 245: 730-7, 1997. 26. Lander HM, Majjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, et al. A molecular redox switch on p21(ras). Structual basis for the nitric oxide-p21 (ras) interaction. J Biol Chem 272:4323 -6,1997. 27. Irani K, Xia Y, Zweier JL, Scollott SJ, Der CJ, Fearson ER, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblast. Science 275:1649-52, 1997. 28. Gomez del Arco P, Martinez-Martinez S, Calvo V, Amesilla AL, Redondo JM. JNK (c-jun NH2-terminal kinase) is a target for antioxidants in T lymphocytes. J Biol Chem 271:26335-40,1996. 29. Bhunia AK, Han H, Snowden A, Chatterjee S. Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J Biol Chem 272:15642-9,1997. 30. Goldstone SD, Hunt NH. Redox regulation of the mitogen-activated protein kinase pathway during lymphocyte activation. Biochim Biophys Acta 1355:355-60,1997. 31. Meile R, Ballmer-Hofer K. Activation-independent nuclear translocation of mitogen activated protein kinase ERK1 mediated by thiol-modifying chemicals. FEBS Lett 394:34-8,1996. 32. Yamauchi A, Bloom ET. Control of cell cycle progression in human natural killer cells through redox regulation of expression and phosphorylation of retinoblastoma gene product protein. Blood 89:4092-9,1997. 33. Nakamura K, Hori T, Sato N, Sugie K, Kawakami T, Yodoi J. Redox regulation of a src family protein tyrosine kinase p56lck in T cells. Oncogene 8:3133-9,1993. 34. Zipser Y, Piade A, Kosower NS. Erythrocyte thiol status regulates band 3 phosphotyrosine level via oxidation/reduction of band 3-associated phosphotyrosine phosphatase. FEBS Lett 406:126-30,1997. 35. Pantopoulos K, Mueller S, Atzberger A, Ansorge W, Stremmel W, Hentze MW. Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress. J Biol Chem 272: 98028,1997. 36. Zattola RJ, Cloherty EK, Coderre PE, Hansen A, Hebert DN, Carrurthers A. Glucose transporter function is controlled by transporter oligomeric structure. A single, intra-molecular disulfide promoter GLUT1 tetramerization. Biochemistry 34:9731-47,1995. 37. McDuffee AT, Senisterra G, Huntley S, Lepock JR, Sekhar KR, Meredith MJ, et al. Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response. J cell Physiol 171:143-51,1997. 38. Viora M, Quaranta MG, Straface E, Vari R, Massella R, Malorni W. Redox imbalance and immune functions:opposite effects of oxidized low-density lipoproteins and N-acetylcysteine. Immunology 104: 431-8, 2001. 39. Sen CK. Nutritional biochemistry of cellular glutathione. J Nutr Biochem 8:660-72,1997. 40. Sen CK, Roy S, Han D, Packer L. Regulation of cellular thiols in human lymphocytes by α-lipoic acid: a flow cytometric analysis. Free Radic Biol Med 22:1241-57,1997. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34988 | - |
| dc.description.abstract | 全身性紅斑性狼瘡(systemic lupus erythematosus, SLE) 是全身性自體免疫疾病的主要疾病,罹患者除了身體各種器官均會有嚴重影響之可能外,更會對各種感染的感受性增加,也是其造成罹患者的主要致病及死亡原因之一。究其原因,自然是全身性紅斑性狼瘡病人有免疫系統上的眾多異常,而在這些異常中,免疫相關細胞本身功能異常,扮演著關鍵性的角色,其中中性白血球(PMN)和單核性細胞(mononuclear cells, MNC)的功能異常,例如對特異性抗原、裂殖素(mitogen),和同種及異種細胞的刺激均呈現反應低下(hyporesponsiveness/anergy)的現象,應是重要的原因之一。雖有不少文獻指出SLE患者的單核性細胞的活化,低反應性,及細胞死亡的信息傳遞有異常和缺陷,但其中信息傳遞缺陷的分子機制至今仍不甚清楚,一般認為細胞內的氧化還原反應的狀態(reduction/oxidation, redox)對於各種生物活性,包括信息傳遞,基因表現及細胞增殖有重要的影響。至今有很多對redox敏感的標的分子陸續被發現,而這些標的分子又會影響到離子輸送、鈣離子代謝、基因轉錄、細胞生長和凋亡等生物學上的重要現象。本實驗主要目的,在於研究全身性紅斑性狼瘡病人免疫相關細胞的低反應性之致病因子可能為何,而經由實驗顯示發現SLE-MNC的glutathione peroxidase (GSH-Px)的活性不僅低下而且蛋白分子的聚合性不同,亦即SLE-MNC表現出來的100kDa GSH-Px tetramer的含量比正常MNC少,SLE-MNC hyporesponsiveness及不正常的redox狀態之間應有某些程度的相關。此外粒線體功能和陽離子運送均有異常之情形。
總結而言,我們的研究顯示,全身性紅斑性狼瘡病人的單核細胞對刺激的反應低下可能是來自減損的氧化還原能力,粒腺體功能性下降,粒腺體 DNA 的缺失,與離子轉送有關分子表現的抑制,以及存在於血清中抗雙股DNA自體性抗體所造成不利的影響所致有關。 | zh_TW |
| dc.description.abstract | The systemic lupus erythematosus (SLE) is a main disease of the immune disease. Patients of SLE suffer from various kinds of organs. In addition, it will also have serious influence on the increase of infection, and this is the main pathogenic and cause of death of the disease, too. Susceptibility to common and opportunistic infections is a major cause of morbidity and mortality in these patients.The important factor of this is the functional defects of the immune cells per se. It is well recognized that hyporesponsiveness to stimulation are found in both polymorphonuclear neutrophils (PMN) and mononuclear cells (MNC) of patients with active SLE. In previous reports demonstrated that SLE-PMN was not only defective in IL-8 production but hyporesponsive to IL-8 stimulation. On the other hand, hyporesponsiveness/anergy of SLE-MNC to phytomitogens, specific antigens, allogeneic and autologous cells stimulation were documented in vitro. However, the real cause for SLE-MNC hyporesponsiveness has not been elucidated yet. Recently, many authors have identified a number of aberrated antigen receptor-mediated signal events in T and B lymphocytes from patients with active SLE. Although the TCR- or BCR-mediated increases in protein tyrosine phosphorylation and cytoplasmic free Ca2+, along with T cell receptor zeta chain deficiency is consistent with the presence of active cells in vivo. But this can not explain the defective responsiveness of SLE-MNC to common antigens such as tetanus toxoid in vitro. It is now quite clear that many biological molecules that are critically important in signaling and in the regulation of gene expression are sensitive cell to reactive oxygen species (ROS) at a concentration much lower than require inflict oxidative damage. Oxidation-reduction (redox) based regulation of signal transduction and gene expression is emerging as a fundamental regulatory mechanism in cell biology. A low, physiological concentration of ROS can regulate a variety of key molecular mechanisms linking with immune responses, cell-cell adhesion, cell proliferation, inflammation, metabolism, aging and death.. Based on these facts,we hypothesized that the hyporesponsiveness of MHC and PMN to stimulation signaling in patients with SLE is related to imbalanced redox state.However, more investigations are needed to solve it.
This main purpose of this experiment is to study the possible cause of hyporesponsiveness in systemic lupus erythematosus. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:38:15Z (GMT). No. of bitstreams: 1 ntu-94-P88448006-1.pdf: 2794490 bytes, checksum: 77dea6d2fc9165bd06260e6d51bbff24 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………1-2
英文摘要………………………………………………3-4 壹、 緒論……………………………………………5-12 一、 與SLE相關之免疫性異常 二、 一些關於全身性紅斑性狼瘡病人免疫缺陷之前題假設 三、 氧化還原 四、 粒線體 五、 膜電位 六、 實驗目的 貳、 方法材料………………………………………13-18 參、 實驗結果………………………………………19-25 肆、 討論……………………………………………26-29 伍、 參考文獻………………………………………30-37 陸、 圖表……………………………………………38-56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 紅斑性狼瘡 | zh_TW |
| dc.subject | redox status | en |
| dc.title | 全身性紅斑性狼瘡病人相關免疫細胞的氧化還原狀態,粒線體功能和陽離子運送之研究 | zh_TW |
| dc.title | Study on redox status, mitochondrial function and cationic ion transport in immume-related cells in Patients with SLE | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李芳仁,蔡長佑 | |
| dc.subject.keyword | 紅斑性狼瘡, | zh_TW |
| dc.subject.keyword | redox status, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-09-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
