請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34983完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳益明(Yih-Ming Chen),謝旭亮(Hsu-Liang Hsieh) | |
| dc.contributor.author | Fong-Iln Pu | en |
| dc.contributor.author | 卜峰麟 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:38:08Z | - |
| dc.date.available | 2006-07-25 | |
| dc.date.copyright | 2006-07-25 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-21 | |
| dc.identifier.citation | 黃斌 (2006) 綠豆CYP90A2基因在低溫逆境下的表現及油菜固醇促進上胚軸延長與低溫耐性的蛋白質體研究。國立台灣大學植物科學研究所
楊敏宗 (2001) 低溫逆境抑制綠豆幼苗葉片細胞核基因之表現及質體發育。 國立台灣大學植物科學研究所博士論文 曾美瑄(2004) 阿拉伯芥中FIN219基因表現的功能性研究。國立台灣大學植物科學研究所 梁華軒(2005) 利用抑制性扣減雜交及二維電泳尋找紅毛草在乾旱逆境下被誘導表現的基因和蛋白質。國立台灣大學植物科學研究所 Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422: 198-207. Aloni, R., Schwalm, K., Langhangs, M., Ullrich, C.I. (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216, 841–853. Anai T, Kono N, Kosemura S, Yamamura S, Hasegawa K (1998) Isolation and characterization of an auxin-inducible SAUR gene from radish seedlings. DNA Seq 9: 329-333 Ang, L.H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., Deng, X.W. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1, 213–222. Ang, L.H. Deng, X.W. (1994). Regulatory hierarchy of photomorphogenic loci: Allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell 6, 613–628 Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci U S A 93: 13404-13409 Baker SS, Wilhelm KS, Thomashow MF (1994) The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24: 701-713 Bergantino E, Dainese P, Cerovic Z, Sechi S, Bassi R (1995) A post-translational modification of the photosystem II subunit CP29 protects maize from cold stress. J Biol Chem 270: 8474-8481 Bowler, C., Yamagata, H., Neuhaus, G. Chua, N.H. (1994). Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev. 8, 2188–2202. Breidenbach RW, Saxton MJ, Hansen LD, Criddle RS (1997) Heat generation and dissipation in plants: can the alternative oxidative phosphorylation pathway serve a thermoregulatory role in plant tissues other than specialized organs? Plant Physiol 114: 1137-1140 Briggs, W.R., Christie, J.M. (2002). Phototropins 1 and 2, versatile plant blue-light receptors. Trends Plant Sci. 7, 204–210. Briggs, W.R., Huala, E. (1999). Blue-light photoreceptors in higher plants. Annu. Rev. Cell Dev. Biol. 15, 33–62. Büche, C., Poppe, C., Schäfer, E., Kretsch, T. (2000). Eid1, a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses. Plant Cell 12, 547–558. Byeong-ha Lee, David A. Henderson, Jian-Kang Zhua (2005) The arabidopsis cold-responsive transcriptome and its regulation by ICE1 The Plant Cell, Vol. 17, 3155–3175, Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17: 1043-1054 Chatel G, Montiel G, Pre M, Memelink J, Thiersault M, Saint-Pierre B, Doireau P, Gantet P (2003) CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter. J Exp Bot 54: 2587-2588 Chang MY, Chen SL, Lee CF, Chen YM (2001) Cold-acclimation and root temperature protection from chilling injury in chilling-sensitive mungbean (Vigna radiata L.) seedlings. Bot Bull Acad Sin 42: 53-60. Chen YM, Liu HF, Lin CY(1991) Chillng stress effects on the growth, mitochondria activity and protein synthesis in etiolated mungbean seeding. Taiwania 36:277-290 Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17: 1043-1054 Clouse SD (1996) Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J 10: 1-8 Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101: 15243-15248 Costello CE (1999) Bioanalytic applications of mass spectrometry. Curr Opin Biotech 10: 22-28. Dutta A, Batra J, Pandey-Rai S, Singh D, Kumar S, Sen J (2005) Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don. Planta 220: 376-383 Ecker JR (1997) BRI-ghtening the pathway to steroid hormone signaling events in plants. Cell 90: 825-827 Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675-1690 Francs-Small CC, Ambard-Bretteville F, Darpas A, Sallantin M, Huet JC, Pernollet JC, Remy R (1992) Variation of the polypeptide composition of mitochondria isolated from different potato tissues. Plant Physiol 98: 273-278 Gao MJ, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49: 459-471 Gee MA, Hagen G, Guilfoyle TJ (1991) Tissue-specific and organspecific expression of soybean auxin-responsive transcripts GH3and SAURs. Plant Cell3 419-430 Gilmour SJ, Artus NN, Thomashow MF (1992) cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol 18: 13-21 Gilmour SJ, Lin C, Thomashow MF (1996) Purification and properties of Arabidopsis thaliana COR (cold-regulated) gene polypeptides COR15am and COR6.6 expressed in Escherichia coli. Plant Physiol 111: 293-299 Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124: 1854-1865 Gilmour SJ, Hajela RK, Thomashow MF (1988) Cold Acclimation in Arabidopsis thaliana. Plant Physiol 87: 745-750 Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130: 1319-1334 Graham D Patterson BD(1982)Response of plants to low, nonfreezing temperature:proteins, metabolism, and acclimation. Ann Rev Plant Physiol33:347-372 Graham D, Hockley DG, Patterson BD (1979) Temperature effects on phosphoenol pyruvate carbonxylase from chilling sensitive and chilling resistant plants In Low temperature Stress in Crop plants:The role of the Membrane. Edited by Lyons JM, Graham D, Rasion JK New York:Academic Press. pp 453-462 Guilhaus M, Selby D, Mlynski V (2000) Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev 19: 65-107. Guy CL(1900) Cold acclimation and freezing stress tolerance: role of protein metabolism. Ann Rev Plant Physiol Plant Mol Biol41:187-233 Hajela RK, Horvath DP, Gilmour SJ, Thomashow MF (1990) Molecular Cloning and Expression of cor (Cold-Regulated) Genes in Arabidopsis thaliana. Plant Physiol 93: 1246-1252 Haldimann P(1988) Low growth temperature-induced changes to pigment composition and photosynthesis in Zea mays genotypes differing in chilling sensitivity. Plant Cell Environ 21:200-208 Hirano H, Kawasaki H, Sassa H (2000) Two-dimensional gel electrophoresis using immobilized pH gradient tube gels. Electrophoresis 21: 440-445 Hochstrasser DF (2002) Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics 2: 868-876 Hobbie L, Timpte C, Estelle M (1994) Molecular genetics of auxin and cytokinin. Plant Mol Biol 26: 1499-1519 Hoffman, P.D., Batschauer, A., Hays, J.B. (1996). PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases. Mol. Gen. Genet. 253, 259–265 Holm, M., Ma, L.G., Qu, L.J., Deng, X.W. (2002). Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev. 16, 1247–1259. Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14, 1958–1970 . Huala, E., Oeller, P.W., Liscum, E., Han, I.S., Larsen, E., Briggs, W.R. (1997). Arabidopsis NPH1, a protein kinase with a putative redox-sensing domain. Science 278, 2120–2123. Hudson, M., Ringli, C., Boylan, M.T., Quail, P.H. (1999). The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev. 13, 2017–2027. Huang B, Chu CH, Chen SL, Juan HF, YM Chen (2006) Proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell Mol Biol Letter (in press). Jain M, Kaur N, Tyagi AK, Khurana JP (2006) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6: 36-46 Jain M, Tyagi AK, Khurana JP (2006) Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics Juan HF, Chang SC, Huang HC, Chen ST (2005) A new application of microwave technology to proteomics. Proteomics 5: 840-842. Kingston-Smith AH, Harbinson J, Williams J, Foyer CH (1997) Effect of Chilling on Carbon Assimilation, Enzyme Activation, and Photosynthetic Electron Transport in the Absence of Photoinhibition in Maize Leaves. Plant Physiol 114: 1039-1046 Kratsch HA, Wise PR(2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337-350 Kreps JA, Simon AE (1997) Environmental and genetic effects on circadian clock-regulated gene expression in Arabidopsis. Plant Cell 9: 297-304 Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130: 2129-2141 Kurkela S, Borg-Franck M (1992) Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol 19: 689-692 Kutchan TM (1993) Strictosidine: from alkaloid to enzyme to gene. Phytochemistry 32: 493-506 Kubien DS, von Caemmerer S, Furbank RT, Sage RF (2003) C4 photosynthesis at low temperature. A study using transgenic plants with reduced amounts of Rubisco. Plant Physiol 132: 1577-1585 Levitt J (1980) Responses of plants to environmental stresses, Ed 2, Vol 1. Academic Press, New York, pp 23-64. Lewis DA (1961) Protoplasmic streaming in plants sensitive and insensitive to chilling temperature.Science 124:75-76 Liebler D (2002) Introduction to the proteomics-tools for the new biology. Humana Press. pp55-98. Lin C, Guo WW, Everson E, Thomashow MF (1990) Cold Acclimation in Arabidopsis and Wheat : A Response Associated with Expression of Related Genes Encoding ;Boiling-Stable' Polypeptides. Plant Physiol 94: 1078-1083 Lin C, Thomashow MF (1992) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun 183: 1103-1108 Lyon JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24: 445-466. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38: 982-993 McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ (1989) Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1: 229-239 Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119: 463-470 Moll BA, Steinback KE (1986) Chilling Sensitivity in Oryza sativa: The Role of Protein Phosphorylation in Protection against Photoinhibition. Plant Physiol 80: 420-423 Munoz-Delgado Ortiz JA (1982) [Physiological changes in fruits and vegetables sensitive to cold]. Rev Esp Fisiol 38 Suppl: 299-302 Nakazawa, M., Yabe, N., Ichikawa, T., Yamamoto, Y.Y., Yoshizumi, T., Hasunuma, K. Matsui, M. (2001). DFL1, a auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation and positively regulates the light response of hypocotyl length. Plant J. 25, 213-221. Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42: 657-665 Neff, M.M., Fankhauser, C., Chory, J. (2000). Light: An indicator of time and place. Genes Dev. 14, 257-271. Nishida I, Murata N (1996) CHILLING SENSITIVITY IN PLANTS AND CYANOBACTERIA: The Crucial Contribution of Membrane Lipids. Annu Rev Plant Physiol Plant Mol Biol 47: 541-568 Oono Y, Seki M, Satou M, Iida K, Akiyama K, Sakurai T, Fujita M, Yamaguchi-Shinozaki K, Shinozaki K (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genomics 6: 212-234 Ouwerkerk PB, Memelink J (1999) A G-box element from the Catharanthus roseus strictosidine synthase (Str) gene promoter confers seed-specific expression in transgenic tobacco plants. Mol Gen Genet 261: 635-643 Pasquali G, Erven AS, Ouwerkerk PB, Menke FL, Memelink J (1999) The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF. Plant Mol Biol 39: 1299-1310 Raison JK (1973) Temperature-induced phase changes in membrane lipids and their influence on metabolic regulation. Symp Soc Exp Biol 27: 485-512 Reid B.R., Howell, S.H. (1995). The functioning of hormones in plant growth and development . In PJ Davies, ed, Plant Hormones: Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 448-485. Rhee SY, Dickerson J, Xu D (2006) Bioinformatics and Its Applications in Plant Biology. Annu Rev Plant Biol (in press). Sano T, Nagata T (2002) The possible involvement of a phosphate-induced transcription factor encoded by phi-2 gene from tobacco in ABA-signaling pathways. Plant Cell Physiol 43: 12-20 Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NP, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46: 1525-1539 Schneider JC, Nielsen E Somerville C (1995) A chilling-sensitive mutant of Arabidopsis is deficient in chloroplast protein accumulation at low temperature. Plant Cell Environ 18:23-32 Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13: 61-72 Shen Q, Ho TH (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7: 295-307 Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3: 217-223 Siberil Y, Benhamron S, Memelink J, Giglioli-Guivarc'h N, Thiersault M, Boisson B, Doireau P, Gantet P (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 45: 477-488 Smalle J, Haegman M, Kurepa J, Van Montagu M, Straeten DV (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci U S A 94: 2756-2761 Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17: 2384-2396 Staswick, P.E., Tiryaki, I., Rowe, M.L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415. Steponkus, P. L. (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol35:543-584 Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94: 1035-1040 Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Baurle I, Kudla J, Nagy F, Schafer E, Harter K. (2001). Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science. 294, 1108-1111. Tates JR (1996) Protein structure analysis by mass spectrometry. Methods Enzymol 271: 351-377. Tazawa M, Sutou E, Shibasaka M (2001) Onion root water transport sensitive to water channel and K+ channel inhibitors. Plant Cell Physiol 42: 28-36 Thomashow MF (1999) PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50: 571-599 Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14: 301-319 Tibbetts M, Donovan M, Roe S, Stiltner AM, Hammond CI (1994) KIN1 and KIN2 protein kinases localize to the cytoplasmic face of the yeast plasma membrane. Exp Cell Res 213: 93-99 Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15: 533-543 Treimer JF, Zenk MH (1979) Purification and properties of strictosidine synthase, the key enzyme in indole alkaloid formation. Eur J Biochem 101: 225-233 Uemura M, Gilmour SJ, Thomashow MF, Steponkus PL (1996) Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on the freeze-induced fusion and leakage of liposomes. Plant Physiol 111: 313-327 Vernieri P, Lenzi A, Figaro M, Tognoni F, Pardossi A (2001) How the roots contribute to the ability of Phaseolus vulgaris L. to cope with chilling-induced water stress. J Exp Bot 52: 2199-2206 Viswanathan C, Zhu JK (2002) Molecular genetic analysis of cold-regulated gene transcription. Philos Trans R Soc Lond B Biol Sci 357: 877-886 Wang CY (1982) Physiological and biochemical response of plants to chilling stress HortScience 17:173-186 Wang H, Cutler AJ (1995a) Promoters from kin1 and cor6.6, two Arabidopsis thaliana low-temperature- and ABA-inducible genes, direct strong beta-glucuronidase expression in guard cells, pollen and young developing seeds. Plant Mol Biol 28: 619-634 Wang H, Datla R, Georges F, Loewen M, Cutler AJ (1995b) Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol Biol 28: 605-617 Wang H, Georges F, Pelcher LE, Saleem M, Cutler AJ (1994) A 5.3-kilobase genomic fragment from Arabidopsis thaliana containing kin1 and cor6.6. Plant Physiol 104: 291-292 Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY, Mi H (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141: 465-474 Webb MS, Gilmour SJ, Thomashow MF, Steponkus PL (1996) Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on dehydration-induced phase transitions of phospholipid membranes. Plant Physiol 111: 301-312 Wheaton TA (1963) Physiological comparasions of plants sensitive and insensitive to chilling temperature. PhD Thesis Univ of Calif, Davis Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379: 466 – 469. Wilhelm KS, Thomashow MF (1993) Arabidopsis thaliana cor15b, an apparent homologue of cor15a, is strongly responsive to cold and ABA, but not drought. Plant Mol Biol 23: 1073-1077 Wilson JM (1976) The mechanism of chill- and drought-hardening of Phaseolus vulgaris leaves New Phytol 76:257-270 Yamazaki Y, Urano A, Sudo H, Kitajima M, Takayama H, Yamazaki M, Aimi N, Saito K (2003) Metabolite profiling of alkaloids and strictosidine synthase activity in camptothecin producing plants. Phytochemistry 62: 461-470 Yamaguchi M, Hayashi Y, Nishimoto Y, Hirose F, Matsukage A (1995) A nucleotide sequence essential for the function of DRE, a common promoter element for Drosophila DNa replication-related genes. J Biol Chem 270: 15808-15814 Yang T, Poovaiah BW (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem 275: 3137-3143 Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2004) Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16: 3448-3459 Yan SP, Zhang QY, Tang ZC, SuWA, Sun WN (2006) Comparative Proteomic Analysis Provides New Insights into Chilling Stress Responses in Rice. Mol Cell Proteomics 5:484-496. Yang G, Komatsu S (2004) Microarray and proteomic analysis of brassinosteroid- and gibberellin- regulated gene and protein expression in rice. Geno Prot Bioinfo 2: 77-83. Yang MT, Chen SL, Lin CY, Chen YM (2005) Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. Planta 221: 374-385. Yates JR 3rd (2000) Mass spectrometry: from genomics to proteomics. Trend Genet 16: 5-8. Yelenosky G, Guy CL (1989) Freezing Tolerance of Citrus, Spinach, and Petunia Leaf Tissue : Osmotic Adjustment and Sensitivity to Freeze Induced Cellular Dehydration. Plant Physiol 89: 444-451 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34983 | - |
| dc.description.abstract | Microarray資料的結果顯示,一種與抗凍相關的基因KIN2 ,於遠紅光下的基因表現量在WT與fin219突變株中具有顯著的差異。利用RT-PCR確認上述Microarray資料的結果是正確的。另外將WT與fin219及FIN219OE兩種轉殖株,於4℃下處理經3個月後,觀察低溫下的生長情形,結果發現fin219突變株生長情形優於FIN219OE轉殖株與WT。從PlantCare資料庫得知,FIN219基因啟動子上具有一個受低溫調控之C-repeat區域與一個受ABA調控區域ABA-Response-Element。FIN219 promer::GUS轉殖株經低溫處理與GUS活性染色,進一步確認FIN219啟動子是受低溫調控。
將WT、FIN219OE與fin219低溫下處理經2星期後,設計KIN2基因與FIN219基因專一性引子進行RT-PCR。藉此了解FIN219與KIN2基因在FIN219OE轉殖株與fin219突變株及WT中基因的表現。結果顯示,KIN2基因在fin219突變株比在FIN219OE與WT中具較高的表現量。 利用蛋白質體學研究工具,將三種不同品系:WT、fin219突變株、FIN219OE轉殖株,進行蛋白質二維膠體電泳。先了解三種品系的蛋白質表現,基本上有哪些不同的地方。結果發現14個蛋白質表現量有差異,其中有9-cis-epoxycarotenoid dioxygenase(A4)、acetyl-CoA carboxylase/ ligase(A8)putative AP2 domain containing protein RAP2.8(B2)、indole-3-glycerol-phosphate synthase(B6)ATEXLA2(Arabidopsis thaliana expansin-like A2)(A9)共五個蛋白質與低溫有關,分別在不同的FIN219基因表現下,具有表現量的差異藉此可以此解釋生理觀察結果中fin219突變株在低溫下的生長情形優於WT與FIN219OE的原因。 | zh_TW |
| dc.description.abstract | Microarray data indicated that KIN2 gene, which encodes antifreeze protein, showed different expression level among Wild type (WT) and fin219 mutant in far-red light. To confirm microarray data,total RNA were extracted WT、FIN219 overexpressor(FIN219OE) and fin219 treated with far-red light and KIN2 expression were examined by RT-PCR. As well these different plants were treated with 4℃ for 3 months to test their tolerance to cold stress. Result indicated that fin219 mutant was healthier than FIN219OE and WT. To future understand the conditions expression levels of FIN219 gene and KIN2 gene under stress, a RT-PCR approach was used for this.The result revealed that the KIN2 expression was higher in fin219 mutant than WT and FIN219OE , which indicates that the fin219 mutant is more chilling tolerant.
The promoter sequence of the FIN219 was searched for cis-element revealed to the cold stress and found that C-repeat element and ABRE were present. To verify cold response,the FIN219 promoter::GUS transgenic plants were treated with cold and underwent for GUS-staining. The result indicated that FIN219 was also induced by cold. Proteomics tools helped to discover that 9-ciscaroteinoid dioxygenase(A4)、acetyl-CoA carboxylase/ ligase(A8)、ATEXLA2 (ARABIDOPSIS THALIANA EXPANSIN-LIKE A2)(A9)、putative AP2 domain containing protein RAP2.8(B2)、indole-3-glycerol-phosphate synthase(B6) have different expression patterns under various expression levels of the FIN219 gene and were involved in cold acclimation. Take together these data indicated that the fin219 mutant is more resistant to cold stresses than WT and FIN219OE plants. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:38:08Z (GMT). No. of bitstreams: 1 ntu-95-R92b42015-1.pdf: 1389069 bytes, checksum: a7759d17deb5b8d6cb3e61c908213b69 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 縮寫對照表 3
中文摘要 6 英文摘要 7 前言 9 材料與方法 18 結果 28 討論 34 參考文獻 40 附圖 56 附表 68 附錄 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 低溫抗性 | zh_TW |
| dc.subject | 低溫 | zh_TW |
| dc.subject | 蛋白質體學 | zh_TW |
| dc.subject | chilling tolerance | en |
| dc.subject | proteomics | en |
| dc.subject | chilling | en |
| dc.title | 利用蛋白質體學與反轉錄聚合酶連鎖反應研究有關 阿拉伯芥FIN219基因突變導致低溫抗性增加之原因 | zh_TW |
| dc.title | Studies Of the FIN219 Mutation Resulting In Chilling Tolerance Increase By Proteomics and RT-PCR In Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | ,謝旭亮(hlhsieh@ntu.edu.tw) | |
| dc.contributor.oralexamcommittee | 陳建德(Chien-Ten Chen) | |
| dc.subject.keyword | 低溫,低溫抗性,蛋白質體學, | zh_TW |
| dc.subject.keyword | chilling,chilling tolerance,proteomics, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-21 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
