Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34973
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華
dc.contributor.authorWei Kuen
dc.contributor.author顧瑋zh_TW
dc.date.accessioned2021-06-13T06:37:55Z-
dc.date.available2005-08-04
dc.date.copyright2005-08-04
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citationAndersen,J.N., Mortensen,O.H., Peters,G.H., Drake,P.G., Iversen,L.F., Olsen,O.H., Jansen,P.G., Andersen,H.S., Tonks,N.K., and Moller,N.P. (2001). Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell Biol 21, 7117-7136.
Bateman,J., Reddy,R.S., Saito,H., and Van,V.D. (2001). The receptor tyrosine phosphatase Dlar and integrins organize actin filaments in the Drosophila follicular epithelium. Curr. Biol 11, 1317-1327.
Bateman,J., Shu,H., and Van,V.D. (2000). The guanine nucleotide exchange factor trio mediates axonal development in the Drosophila embryo. Neuron 26, 93-106.
Beltran,P.J. and Bixby,J.L. (2003). Receptor protein tyrosine phosphatases as mediators of cellular adhesion. Front Biosci. 8, d87-d99.
Bialik,S., Bresnick,A.R., and Kimchi,A. (2004). DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. Cell Death. Differ. 11, 631-644.
Blanchetot,C., Tertoolen,L.G., Overvoorde,J., and den,H.J. (2002). Intra- and intermolecular interactions between intracellular domains of receptor protein-tyrosine phosphatases. J. Biol Chem. 277, 47263-47269.
Brunton,V.G., MacPherson,I.R., and Frame,M.C. (2004). Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim. Biophys. Acta 1692, 121-144.
Cary,L.A., Klinghoffer,R.A., Sachsenmaier,C., and Cooper,J.A. (2002). SRC catalytic but not scaffolding function is needed for integrin-regulated tyrosine phosphorylation, cell migration, and cell spreading. Mol. Cell Biol 22, 2427-2440.
Chang,C., Yu,T.W., Bargmann,C.I., and Tessier-Lavigne,M. (2004). Inhibition of Netrin-Mediated Axon Attraction by a Receptor Protein Tyrosine Phosphatase. Science 305, 103-106.
Chen,C.H., Wang,W.J., Kuo,J.C., Tsai,H.C., Lin,J.R., Chang,Z.F., and Chen,R.H. (2004). Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J.
Chen,H.C., Appeddu,P.A., Isoda,H., and Guan,J.L. (1996). Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem. 271, 26329-26334.
Clandinin,T.R., Lee,C.H., Herman,T., Lee,R.C., Yang,A.Y., Ovasapyan,S., and Zipursky,S.L. (2001). Drosophila LAR regulates R1-R6 and R7 target specificity in the visual system. Neuron 32, 237-248.
Cohen,O., Feinstein,E., and Kimchi,A. (1997). DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J. 16, 998-1008.
Cohen,O., Inbal,B., Kissil,J.L., Raveh,T., Berissi,H., Spivak-Kroizaman,T., Feinstein,E., and Kimchi,A. (1999). DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J. Cell Biol. 146, 141-148.
Cohen,O. and Kimchi,A. (2001). DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death. Differ. 8, 6-15.
Debant,A., Serra-Pages,C., Seipel,K., O'Brien,S., Tang,M., Park,S.H., and Streuli,M. (1996). The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl. Acad. Sci. U. S. A 93, 5466-5471.
Deiss,L.P., Feinstein,E., Berissi,H., Cohen,O., and Kimchi,A. (1995). Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 9, 15-30.
DeMali,K.A., Wennerberg,K., and Burridge,K. (2003). Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol 15, 572-582.
Desai,C.J., Popova,E., and Zinn,K. (1994). A Drosophila receptor tyrosine phosphatase expressed in the embryonic CNS and larval optic lobes is a member of the set of proteins bearing the 'HRP' carbohydrate epitope. J. Neurosci. 14, 7272-7283.
Erb,E.M., Tangemann,K., Bohrmann,B., Muller,B., and Engel,J. (1997). Integrin alphaIIb beta3 reconstituted into lipid bilayers is nonclustered in its activated state but clusters after fibrinogen binding. Biochemistry 36, 7395-7402.
Felsenfeld,D.P., Schwartzberg,P.L., Venegas,A., Tse,R., and Sheetz,M.P. (1999). Selective regulation of integrin--cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol 1, 200-206.
Fincham,V.J., Unlu,M., Brunton,V.G., Pitts,J.D., Wyke,J.A., and Frame,M.C. (1996). Translocation of Src kinase to the cell periphery is mediated by the actin cytoskeleton under the control of the Rho family of small G proteins. J Cell Biol 135, 1551-1564.
Frame,M.C. (2004). Newest findings on the oldest oncogene; how activated src does it. J. Cell Sci. 117, 989-998.
Frisch,S.M. and Screaton,R.A. (2001). Anoikis mechanisms. Curr. Opin. Cell Biol 13, 555-562.
Frisch,S.M., Vuori,K., Ruoslahti,E., and Chan-Hui,P.Y. (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134, 793-799.
Furrer,M.P., Kim,S., Wolf,B., and Chiba,A. (2003). Robo and Frazzled/DCC mediate dendritic guidance at the CNS midline. Nat Neurosci. 6, 223-230.
Gershon,T.R., Baker,M.W., Nitabach,M., and Macagno,E.R. (1998a). The leech receptor protein tyrosine phosphatase HmLAR2 is concentrated in growth cones and is involved in process outgrowth. Development 125, 1183-1190.
Gershon,T.R., Baker,M.W., Nitabach,M., Wu,P., and Macagno,E.R. (1998b). Two receptor tyrosine phosphatases of the LAR family are expressed in the developing leech by specific central neurons as well as select peripheral neurons, muscles, and other cells. J. Neurosci. 18, 2991-3002.
Giancotti,F.G. and Tarone,G. (2003). Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu. Rev. Cell Dev. Biol 19, 173-206.
Giannone,G., Jiang,G., Sutton,D.H., Critchley,D.R., and Sheetz,M.P. (2003). Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J. Cell Biol 163, 409-419.
Gilmore,A.P., Metcalfe,A.D., Romer,L.H., and Streuli,C.H. (2000). Integrin-mediated survival signals regulate the apoptotic function of Bax through its conformation and subcellular localization. J Cell Biol 149, 431-446.
Glenney,J.R., Jr. and Zokas,L. (1989). Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J. Cell Biol 108, 2401-2408.
Grossmann,J. (2002). Molecular mechanisms of 'detachment-induced apoptosis--Anoikis'. Apoptosis. 7, 247-260.
Hamelin,M., Zhou,Y., Su,M.W., Scott,I.M., and Culotti,J.G. (1993). Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327-330.
Hanks,S.K., Ryzhova,L., Shin,N.Y., and Brabek,J. (2003). Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci. 8, d982-d996.
Hisano,C., Tanaka,R., Fujishima,H., Ariyama,H., Tsuchiya,T., Tatsumoto,T., Mitsugi,K., Nakamura,M., and Nakano,S. (2003). Suppression of anoikis by v-Src but not by activated c-H-ras in human gallbladder epithelial cells. Cell Biol Int. 27, 415-421.
Hogg,N., Henderson,R., Leitinger,B., McDowall,A., Porter,J., and Stanley,P. (2002). Mechanisms contributing to the activity of integrins on leukocytes. Immunol. Rev. 186, 164-171.
Hong,K., Hinck,L., Nishiyama,M., Poo,M.M., Tessier-Lavigne,M., and Stein,E. (1999). A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927-941.
Hood,J.D. and Cheresh,D.A. (2002). Role of integrins in cell invasion and migration. Nat Rev. Cancer 2, 91-100.
Howell,B.W. and Cooper,J.A. (1994). Csk suppression of Src involves movement of Csk to sites of Src activity. Mol. Cell Biol 14, 5402-5411.
Ilic,D., Furuta,Y., Kanazawa,S., Takeda,N., Sobue,K., Nakatsuji,N., Nomura,S., Fujimoto,J., Okada,M., and Yamamoto,T. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539-544.
Ilic,D., Kovacic,B., Johkura,K., Schlaepfer,D.D., Tomasevic,N., Han,Q., Kim,J.B., Howerton,K., Baumbusch,C., Ogiwara,N., Streblow,D.N., Nelson,J.A., Dazin,P., Shino,Y., Sasaki,K., and Damsky,C.H. (2004). FAK promotes organization of fibronectin matrix and fibrillar adhesions. J Cell Sci 117, 177-187.
Inbal,B., Cohen,O., Polak-Charcon,S., Kopolovic,J., Vadai,E., Eisenbach,L., and Kimchi,A. (1997). DAP kinase links the control of apoptosis to metastasis. Nature 390, 180-184.
Isenberg,W.M., McEver,R.P., Phillips,D.R., Shuman,M.A., and Bainton,D.F. (1987). The platelet fibrinogen receptor: an immunogold-surface replica study of agonist-induced ligand binding and receptor clustering. J Cell Biol 104, 1655-1663.
Jang,C.W., Chen,C.H., Chen,C.C., Chen,J.Y., Su,Y.H., and Chen,R.H. (2002). TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 4, 51-58.
Jones,R.J., Avizienyte,E., Wyke,A.W., Owens,D.W., Brunton,V.G., and Frame,M.C. (2002). Elevated c-Src is linked to altered cell-matrix adhesion rather than proliferation in KM12C human colorectal cancer cells. Br. J. Cancer 87, 1128-1135.
Kanner,S.B., Reynolds,A.B., Vines,R.R., and Parsons,J.T. (1990). Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc. Natl. Acad. Sci. U. S. A 87, 3328-3332.
Kaplan,K.B., Bibbins,K.B., Swedlow,J.R., Arnaud,M., Morgan,D.O., and Varmus,H.E. (1994). Association of the amino-terminal half of c-Src with focal adhesions alters their properties and is regulated by phosphorylation of tyrosine 527. EMBO J. 13, 4745-4756.
Kaplan,K.B., Swedlow,J.R., Morgan,D.O., and Varmus,H.E. (1995). c-Src enhances the spreading of src-/- fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev. 9, 1505-1517.
Kaufmann,N., DeProto,J., Ranjan,R., Wan,H., and Van,V.D. (2002). Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. Neuron 34, 27-38.
Keleman,K. and Dickson,B.J. (2001). Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605-617.
Kimchi,A. (1998). DAP genes: novel apoptotic genes isolated by a functional approach to gene cloning. Biochim. Biophys. Acta 1377, F13-F33.
Klinghoffer,R.A., Sachsenmaier,C., Cooper,J.A., and Soriano,P. (1999). Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459-2471.
Kogel,D., Prehn,J.H., and Scheidtmann,K.H. (2001). The DAP kinase family of pro-apoptotic proteins: novel players in the apoptotic game. Bioessays 23, 352-358.
Kohl,A., Binz,H.K., Forrer,P., Stumpp,M.T., Pluckthun,A., and Grutter,M.G. (2003). Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc. Natl. Acad. Sci. U. S. A 100, 1700-1705.
Krueger,N.X., Reddy,R.S., Johnson,K., Bateman,J., Kaufmann,N., Scalice,D., Van,V.D., and Saito,H. (2003). Functions of the ectodomain and cytoplasmic tyrosine phosphatase domains of receptor protein tyrosine phosphatase Dlar in vivo. Mol. Cell Biol 23, 6909-6921.
Kuo,J.C., Lin,J.R., Staddon,J.M., Hosoya,H., and Chen,R.H. (2003). Uncoordinated regulation of stress fibers and focal adhesions by DAP kinase. J. Cell Sci. 116, 4777-4790.
Lakkakorpi,P.T., Nakamura,I., Young,M., Lipfert,L., Rodan,G.A., and Duong,L.T. (2001). Abnormal localisation and hyperclustering of (alpha)(V)(beta)(3) integrins and associated proteins in Src-deficient or tyrphostin A9-treated osteoclasts. J. Cell Sci. 114, 149-160.
Laudanna,C., Kim,J.Y., Constantin,G., and Butcher,E. (2002). Rapid leukocyte integrin activation by chemokines. Immunol. Rev. 186, 37-46.
Levy-Strumpf,N. and Kimchi,A. (1998). Death associated proteins (DAPs): from gene identification to the analysis of their apoptotic and tumor suppressive functions. Oncogene 17, 3331-3340.
Li,R., Mitra,N., Gratkowski,H., Vilaire,G., Litvinov,R., Nagasami,C., Weisel,J.W., Lear,J.D., DeGrado,W.F., and Bennett,J.S. (2003). Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. Science 300, 795-798.
Li,W., Lee,J., Vikis,H.G., Lee,S.H., Liu,G., Aurandt,J., Shen,T.L., Fearon,E.R., Guan,J.L., Han,M., Rao,Y., Hong,K., and Guan,K.L. (2004). Activation of FAK and Src are receptor-proximal events required for netrin signaling. Nat Neurosci 7, 1213-1221.
Liu,G., Beggs,H., Jurgensen,C., Park,H.T., Tang,H., Gorski,J., Jones,K.R., Reichardt,L.F., Wu,J., and Rao,Y. (2004). Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nat Neurosci 7, 1222-1232.
Llambi,F., Lourenco,F.C., Gozuacik,D., Guix,C., Pays,L., Del,R.G., Kimchi,A., and Mehlen,P. (2005). The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase. EMBO J 24, 1192-1201.
Maher,P.A. (2000). Disruption of Cell-Substrate Adhesion Activates the Protein Tyrosine Kinase pp60c-src. Experimental Cell Research 260, 189-198.
Maurel-Zaffran,C., Suzuki,T., Gahmon,G., Treisman,J.E., and Dickson,B.J. (2001). Cell-autonomous and -nonautonomous functions of LAR in R7 photoreceptor axon targeting. Neuron 32, 225-235.
Medley,Q.G., Buchbinder,E.G., Tachibana,K., Ngo,H., Serra-Pages,C., and Streuli,M. (2003). Signaling between focal adhesion kinase and trio. J. Biol Chem. 278, 13265-13270.
Mosavi,L.K., Cammett,T.J., Desrosiers,D.C., and Peng,Z.Y. (2004). The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13, 1435-1448.
Obergfell,A., Eto,K., Mocsai,A., Buensuceso,C., Moores,S.L., Brugge,J.S., Lowell,C.A., and Shattil,S.J. (2002). Coordinate interactions of Csk, Src, and Syk kinases with [alpha]IIb[beta]3 initiate integrin signaling to the cytoskeleton. J. Cell Biol 157, 265-275.
Owen,J.D., Ruest,P.J., Fry,D.W., and Hanks,S.K. (1999). Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol. Cell Biol 19, 4806-4818.
Owens,D.W., McLean,G.W., Wyke,A.W., Paraskeva,C., Parkinson,E.K., Frame,M.C., and Brunton,V.G. (2000). The catalytic activity of the Src family kinases is required to disrupt cadherin-dependent cell-cell contacts. Mol. Biol Cell 11, 51-64.
Park,H.B., Golubovskaya,V., Xu,L., Yang,X., Lee,J.W., Scully,S., Craven,R.J., and Cance,W.G. (2004). Activated Src increases adhesion, survival and alpha2-integrin expression in human breast cancer cells. Biochem. J 378, 559-567.
Parsons,J.T. (2003). Focal adhesion kinase: the first ten years. J. Cell Sci. 116, 1409-1416.
Pawson,T. and Nash,P. (2003). Assembly of cell regulatory systems through protein interaction domains. Science 300, 445-452.
Pelled,D., Raveh,T., Riebeling,C., Fridkin,M., Berissi,H., Futerman,A.H., and Kimchi,A. (2002). Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J. Biol. Chem. 277, 1957-1961.
Pulido,R., Serra-Pages,C., Tang,M., and Streuli,M. (1995). The LAR/PTP delta/PTP sigma subfamily of transmembrane protein-tyrosine-phosphatases: multiple human LAR, PTP delta, and PTP sigma isoforms are expressed in a tissue-specific manner and associate with the LAR-interacting protein LIP.1. Proc. Natl. Acad. Sci. U. S. A 92, 11686-11690.
Raveh,T., Berissi,H., Eisenstein,M., Spivak,T., and Kimchi,A. (2000). A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity. Proc. Natl. Acad. Sci. U. S. A 97, 1572-1577.
Raveh,T., Droguett,G., Horwitz,M.S., DePinho,R.A., and Kimchi,A. (2001). DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat. Cell Biol. 3, 1-7.
Ren,X.D., Kiosses,W.B., Sieg,D.J., Otey,C.A., Schlaepfer,D.D., and Schwartz,M.A. (2000). Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113 ( Pt 20), 3673-3678.
Rhee,J., Mahfooz,N.S., Arregui,C., Lilien,J., Balsamo,J., and VanBerkum,M.F. (2002). Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat Cell Biol 4, 798-805.
rias-Salgado,E.G., Lizano,S., Sarkar,S., Brugge,J.S., Ginsberg,M.H., and Shattil,S.J. (2003). Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc. Natl. Acad. Sci. U. S. A 100, 13298-13302.
Richardson,A., Malik,R.K., Hildebrand,J.D., and Parsons,J.T. (1997). Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol. Cell Biol 17, 6906-6914.
Richardson,A. and Parsons,T. (1996). A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. Nature 380, 538-540.
Rohrschneider,L.R. (1980). Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product. Proc. Natl. Acad. Sci. U. S. A 77, 3514-3518.
Sanjay,A., Houghton,A., Neff,L., DiDomenico,E., Bardelay,C., Antoine,E., Levy,J., Gailit,J., Bowtell,D., Horne,W.C., and Baron,R. (2001). Cbl associates with Pyk2 and Src to regulate Src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motility. J. Cell Biol 152, 181-195.
Schaapveld,R.Q., Schepens,J.T., Bachner,D., Attema,J., Wieringa,B., Jap,P.H., and Hendriks,W.J. (1998). Developmental expression of the cell adhesion molecule-like protein tyrosine phosphatases LAR, RPTPdelta and RPTPsigma in the mouse. Mech. Dev. 77, 59-62.
Schaller,M.D., Hildebrand,J.D., and Parsons,J.T. (1999). Complex formation with focal adhesion kinase: A mechanism to regulate activity and subcellular localization of Src kinases. Mol. Biol Cell 10, 3489-3505.
Schlaepfer,D.D. and Hunter,T. (1996). Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol. Cell Biol 16, 5623-5633.
Schlaepfer,D.D., Jones,K.C., and Hunter,T. (1998). Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol. Cell Biol 18, 2571-2585.
Sedgwick,S.G. and Smerdon,S.J. (1999). The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem. Sci. 24, 311-316.
Seidel-Dugan,C., Meyer,B.E., Thomas,S.M., and Brugge,J.S. (1992). Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src. Mol. Cell Biol 12, 1835-1845.
Serra-Pages,C., Kedersha,N.L., Fazikas,L., Medley,Q., Debant,A., and Streuli,M. (1995). The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J 14, 2827-2838.
Serra-Pages,C., Medley,Q.G., Tang,M., Hart,A., and Streuli,M. (1998). Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem. 273, 15611-15620.
Shohat,G., Spivak-Kroizman,T., Cohen,O., Bialik,S., Shani,G., Berrisi,H., Eisenstein,M., and Kimchi,A. (2001). The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. J. Biol Chem. 276, 47460-47467.
Sims,P.J., Ginsberg,M.H., Plow,E.F., and Shattil,S.J. (1991). Effect of platelet activation on the conformation of the plasma membrane glycoprotein IIb-IIIa complex. J Biol Chem. 266, 7345-7352.
Sommer,L., Rao,M., and Anderson,D.J. (1997). RPTP delta and the novel protein tyrosine phosphatase RPTP psi are expressed in restricted regions of the developing central nervous system. Dev. Dyn. 208, 48-61.
Stein,E. and Tessier-Lavigne,M. (2001). Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291, 1928-1938.
Stoker,A.W., Gehrig,B., Haj,F., and Bay,B.H. (1995). Axonal localisation of the CAM-like tyrosine phosphatase CRYP alpha: a signalling molecule of embryonic growth cones. Development 121, 1833-1844.
Streuli,M., Krueger,N.X., Thai,T., Tang,M., and Saito,H. (1990). Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J. 9, 2399-2407.
Thomas,S.M. and Brugge,J.S. (1997). Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol 13, 513-609.
Thompson,K.M., Uetani,N., Manitt,C., Elchebly,M., Tremblay,M.L., and Kennedy,T.E. (2003). Receptor protein tyrosine phosphatase sigma inhibits axonal regeneration and the rate of axon extension. Mol. Cell Neurosci. 23, 681-692.
Tian,S.S., Tsoulfas,P., and Zinn,K. (1991). Three receptor-linked protein-tyrosine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell 67, 675-680.
Timpson,P., Jones,G.E., Frame,M.C., and Brunton,V.G. (2001). Coordination of cell polarization and migration by the Rho family GTPases requires Src tyrosine kinase activity. Curr. Biol 11, 1836-1846.
van,K.Y. and Figdor,C.G. (2000). Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr. Opin. Cell Biol 12, 542-547.
Vivanco,I. and Sawyers,C.L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev. Cancer 2, 489-501.
Vojtek,A.B. and Hollenberg,S.M. (1995). Ras-Raf interaction: two-hybrid analysis. Methods Enzymol. 255, 331-342.
Volberg,T., Romer,L., Zamir,E., and Geiger,B. (2001). pp60(c-src) and related tyrosine kinases: a role in the assembly and reorganization of matrix adhesions. J. Cell Sci. 114, 2279-2289.
Wang,W.J., Kuo,J.C., Yao,C.C., and Chen,R.H. (2002). DAP-kinase induces apoptosis by suppressing integrin activity and disrupting matrix survival signals. J. Cell Biol 159, 169-179.
Webb,D.J., Donais,K., Whitmore,L.A., Thomas,S.M., Turner,C.E., Parsons,J.T., and Horwitz,A.F. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6, 154-161.
Wei,L., Yang,Y., Zhang,X., and Yu,Q. (2004). Cleavage of p130Cas in anoikis. J. Cell Biochem. 91, 325-335.
Weng,L.P., Wang,X., and Yu,Q. (1999). Transmembrane tyrosine phosphatase LAR induces apoptosis by dephosphorylating and destabilizing p130Cas. Genes Cells 4, 185-196.
Wierzbicka-Patynowski,I. and Schwarzbauer,J.E. (2002). Regulatory role for SRC and phosphatidylinositol 3-kinase in initiation of fibronectin matrix assembly. J. Biol Chem. 277, 19703-19708.
Wierzbicka-Patynowski,I. and Schwarzbauer,J.E. (2003). The ins and outs of fibronectin matrix assembly. J. Cell Sci. 116, 3269-3276.
Wills,Z., Bateman,J., Korey,C.A., Comer,A., and Van,V.D. (1999). The tyrosine kinase Abl and its substrate enabled collaborate with the receptor phosphatase Dlar to control motor axon guidance. Neuron 22, 301-312.
Windham,T.C., Parikh,N.U., Siwak,D.R., Summy,J.M., McConkey,D.J., Kraker,A.J., and Gallick,G.E. (2002). Src activation regulates anoikis in human colon tumor cell lines. Oncogene 21, 7797-7807.
Woodside,D.G., Liu,S., and Ginsberg,M.H. (2001). Integrin activation. Thromb. Haemost. 86, 316-323.
Yamamoto,M., Hioki,T., Ishii,T., Nakajima-Iijima,S., and Uchino,S. (2002). DAP kinase activity is critical for C(2)-ceramide-induced apoptosis in PC12 cells. Eur. J. Biochem. 269, 139-147.
Yu,T.W., Hao,J.C., Lim,W., Tessier-Lavigne,M., and Bargmann,C.I. (2002). Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a Netrin-independent UNC-40/DCC function. Nat Neurosci. 5, 1147-1154.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34973-
dc.description.abstract死亡相關蛋白激酶(Death associated protein kinase,DAPK)是一個受鈣�攜鈣素調控的絲胺酸�酥胺酸激酶。其生理功能已經被證實的部份主要包括會抑制細胞附著能力和促進細胞死亡。雖然有關DAPK的生理功能部份已經被解開,但其在細胞內訊息傳遞路徑有很多地方仍尚未明白。為了更進一步探討有關DAPK的生理功能,我們實驗室利用酵母菌雙雜交系統(yeast two-hybrid)尋找DAPK的結合蛋白。在這樣的策略中我們找到了DAPK的一個結合蛋白稱為LAR (leukocyte common antigen related tyrosine phosphatase)。在本篇論文的第一個部份:我們著重於討論DAPK和LAR的結合方式,發現DAPK會藉由其錨蛋白重覆序列3到6(ankyrin repeats 3-6)的區域與LAR的第一個或第二個去磷酸酶區間(phosphatase domain)進行專一性的交互作用。至於在本論文的第二部份:我們目的在找尋LAR作用於DAPK時扮演拮抗角色的蛋白,功能在拮抗LAR對DAPK所造成的影響。首先,我們發現DAPK的酪胺酸磷酸化程度會在細胞附著到細胞外基質時有上昇現象,並確定這現象的磷酸化上昇的位置是位於DAPK Y491/492。也因此我們推測出作用於DAPK上的酪胺酸激脢是Src kinase。利用正常老鼠的纖維母細胞(fibroblast)和Src/Fyn/Yes-triple knockout cells (SYF cells)做比較,我們更進一步明白在細胞內Src對DAPK的影響。不僅如此,DAPK和Src在細胞內我們也證明其間有互相結合的現象。不僅如此,因為Src表現對DAPK所造成的酪胺酸磷酸化上升結果會抑制DAPK的酵素能力,這樣的現象和LAR所造成的結果恰巧相反,顯示在對DAPK生理調控上Src的確和LAR扮演著結抗作用。概括而言,本篇論文的重點在探討DAPK訊號傳遞。我們證實DAPK上的酪胺酸磷酸化程度可以決定DAPK本身的酵素催化能力,並也知道這樣磷酸化影響的位置是位於DAPK Y491/492。其中,我們更進一步確定的這樣的調控方式是由一個酪胺酸激脢(Src)和一個酪胺酸去磷酸脢(LAR)所共同參與zh_TW
dc.description.abstractDeath-associated protein kinase, DAPK, is a Ca2+/calmodulin-regulated Ser/Thr kinase that promotes anti-adhesion and cell death. Although the multiple physiological functions of DAPK are demonstrated, its intracellular signaling mechanism is largely unknown. To get insight into DAPK molecular signaling network, our laboratory searched for its interacting protein and identified leukocyte common antigen related tyrosine phosphatase (LAR) as one of its interacting partner. The first part of this thesis focused on studying their physical interaction. DAPK interacts with LAR in vivo through its ankyrin repeat domain, of which 3-6 repeats are both sufficient and required for interacting with LAR. On the other hand, the association of LAR and DAPK ankyrin repeats is mediated by LAR phosphatase domain, D1 or D2, as well as both of them. For the latter part of the thesis, we aimed to identify the possible antagonist of LAR, which was demonstrated in our laboratory as a DAPK activator through its dephosphorylation of DAPK at Y491/492 residues. It was discovered that there exists certain adhesion-dependent tyrosine kinase phosphorylating DAPK at Y491/492. Subsequent experiments identified this kinase as Src. By making use of Src/Fyn/Yes-triple knockout cell, we evaluated the determinant role for Src to regulate DAPK tyrosine phosphorylation at both exogenous and endogenous levels. The in vivo interaction between DAPK and Src is demonstrated. We also showed that the Y491/492 residues are the major sites for DAPK phosphorylation by Src. To investigate if this Src-mediated DAPK phosphorylation is of functional significance, we performed in vitro DAPK kinase assay and found that Src expression could inhibit DAPK catalytic activity. Therefore, it is through the direct tyrosine phosphorylation of DAPK Y491/492 that Src inhibits DAPK catalytic activity. In conclusion, Src is identified as DAPK inhibitor acting in a reverse direction in regard to LAR, revealing the reciprocal regulation of DAPK by a pair of tyrosine kinase and phosphatase, Src and LAR.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:37:55Z (GMT). No. of bitstreams: 1
ntu-94-R92448007-1.pdf: 1448193 bytes, checksum: 3de0500379710786e3b21461358fc5b2 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of content 2
誌謝 5
中文摘要 7
Abstract 8
Introduction 9
DAPK in apoptosis 9
DAPK, as an actin-filament associated kinase, inactivates integrin and causes anoikis-like cell death 9
DAPK multi-domain structure 10
DAPK kinase activity is required for DAPK functions 10
Investigation of molecular context of DAPK signaling by identifying interacting proteins through protein-protein interacting modules 10
Death domain-interacting proteins positively regulate DAPK 11
The ankyrin repeat as molecular architecture for protein-protein interaction 11
Ankyrin repeats in DAPK 12
Identification of LAR as a DAPK interacting protein 12
LAR (leukocyte common antigen related tyrosine phosphatase) 13
LAR physiological function 14
LAR in cell adhesion 14
Src as a non-receptor tyrosine kinase 15
Structure and regulation of Src 15
Src physiological function 16
The interplay between Src and integrin 16
Focal adhesion kinase (FAK) as important SFK binding partner 17
Biological processes mediated by Src-integrin signaling 18
Material and Method 21
Constructs 21
Yeast two-hybrid assay 21
Generation of anti-LAR antiserum 21
Antibodies and reagents. 22
Cell culture and transfection 22
Western blotting 23
Immunoprecipitation 23
In vitro Src kinase assay 23
In vitro DAPK kinase assay 24
Result 25
DAPK interacts with LAR in vivo 25
Generation and characterization of anti-LAR antiserum 25
Endogenous LAR expression in various cell lines 26
Mapping the interacting region of LAR and DAPK 26
Identification of the adhesion-dependent tyrosine kinase phosphorylation of DAPK Y491/492 27
The adhesion-dependent tyrosine phosphorylation of DAPK can be reversed by PP2 (Src family kinase inhibitor) treatment 28
DAPK tyrosine phosphorylation is influenced by Src-FAK signaling 28
v-Src overexpression dramatically induces the tyrosine phosphorylation of DAPK but not its 491/492FF mutant 29
Constitutively active c-Src overexpression dramatically induces the tyrosine phosphorylation of DAPK but not its 491/492FF mutant 29
Src influences both DAPK Y491 and Y492 phosphorylation 29
Overexpressed DAPK exhibits higher tyrosine phosphorylation in the presence of either endogenous or ectopically introduced Src expression 30
Endogenous DAPK exhibits higher tyrosine phosphorylation in response to ectopically introduced Src overexpression 30
Endogenous DAPK exhibits higher tyrosine phosphorylation in the presence of endogenous Src family kinases 31
DAPK interacts with Src in vivo 31
DAPK Y491/492 are the major sites for in vitro phosphorylation by Src 32
Overexpression of Src inhibits DAPK catalytic activity 32
Discussions 34
Reciprocal roles of LAR and Src in regulating DAPK 34
Other possible tyrosine phosphorylation sites of DAPK under Src regulation 34
The repressed DAPK catalytic activity through Y491/492 phosphorylation 35
The signaling context at which LAR and Src antagonistically regulate DAPK 36
The spatial relationship/subcellular localization 36
Possible DAPK/Src/LAR interplay coordinated by integrin signaling 37
Possible involvement of FAK in DAPK/LAR/Src interplay 38
Possible DAPK/Src/LAR coordination in netrin signaling 38
Conclusion 39
Figure 41
Figure 1.The domain organization of DAPK 41
Figure 2.Identification of LAR as a DAPK-interacting protein in yeast two-hybrid system 42
Figure 3. DAPK interacts with LAR in vivo 43
Figure 4. Generation and characterization of anti-LAR antiserum 44
Figure 5. Endogenous LAR expression in various cell lines 45
Figure 6. Mapping the interacting region of LAR and DAPK 46
Figure 7. LAR as a novel activator of DAPK by dephosphorylating DAPK Y491/492 47
Figure 8. Identification of the adhesion-dependent tyrosine kinase phosphorylating DAPK Y491/492 48
Figure 9 . The adhesion-dependent tyrosine phosphorylation of DAPK can be reversed by PP2 (Src inhibitor) treatment 49
Figure 10. DAPK tyrosine phosphorylation is influenced by Src-FAK signaling 50
Figure 11. v-Src overexpression dramatically induces the tyrosine phosphorylation of DAPK but not its 491/492FF mutant 51
Figure 12. Constitutive active c-Src overexpression dramatically induces the tyrosine phosphorylation of DAPK but not its 491/492FF mutant 52
Figure 13. Src phosphorylates both DAPK Y491 and Y492 53
Figure 14. Overexpressed DAPK exhibits higher tyrosine phosphorylation in the presence of endogenous Src expression 54
Figure 15. Endogenous DAPK exhibits higher tyrosine phosphorylation in response to ectopically introduced Src overexpression 55
Figure 16. Endogenous DAPK exhibits higher tyrosine phosphorylation in the presence of endogenous Src expression 56
Figure 17. DAPK interacts with Src in vivo 57
Figure 18. DAPK Y491/492 as major sites for Src to phosphorylate DAPK in vitro 58
Figure 19. Overexpression of Src inhibits DAPK catalytic activity 59
Reference 60
dc.language.isoen
dc.subject酪胺酸去磷酸脢zh_TW
dc.subject死亡相關蛋白激&#37238zh_TW
dc.subject酪胺酸磷酸化zh_TW
dc.subject酪胺酸激脢zh_TW
dc.subjectSrcen
dc.subjecttyrosine phosphorylationen
dc.subjectDAPKen
dc.subjectLARen
dc.titleLAR與Src對DAPK的正向和負向調控zh_TW
dc.titleThe Reciprocal Regulation of DAPK by LAR and Srcen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂勝春,張智芬
dc.subject.keyword死亡相關蛋白激&#37238,酪胺酸磷酸化,酪胺酸激脢,酪胺酸去磷酸脢,zh_TW
dc.subject.keywordDAPK,Src,LAR,tyrosine phosphorylation,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2005-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved