請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34967完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張睿詒(Reui-Yi Chang) | |
| dc.contributor.author | Shu-Ting Chang | en |
| dc.contributor.author | 張舒婷 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:37:48Z | - |
| dc.date.available | 2006-02-07 | |
| dc.date.copyright | 2006-02-07 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-09-19 | |
| dc.identifier.citation | 中央健康保險局網頁: http://www.nhi.gov.tw
林文德:風險校正模型之預測力研究。國立台灣大學衛生政策與管理研究所博士論文,2003。 周明慧:評估不同分險分攤型式之選擇與效率誘因。國立台灣大學醫療機構管理研究所碩士論文,2003。 柯玲晶:使用CCS發展合併症指數。國立陽明大學醫務管理研究所碩士論文,2004 。 張睿詒、江東亮:風險校正:健康保險市場的效率與公平之關鍵。台北:中華衛誌,17(5),1998。 張睿詒、賴秋伶:風險校正因子:論人計酬醫療費用預測之基礎。台灣衛誌,23(2),2004。 謝其政:利用全民健保資料建立風險計價模式之初探。國立台灣大學醫療機構管理研究所碩士論文,1998。 賴秋伶:利用診斷資料建構風險計價模式。國立台灣大學醫療機構管理研究所碩士論文,2000。 羅文琪:建立物理治療門診患者功能關聯群之初探-以肌肉骨骼系統疾病患者為例。國立台灣大學醫療機構管理研究所碩士論文, 2001。 3M Inc. All Patient Diagnosis Related Groups Definitions Manual Version 14.0, 1996. Adam, E. K., Bronstein, J. M., Raskind-Hood, C. Adjusted Clinical Groups: Predictive Accuracy for Medicaid Enrollees in Three States. Health Care Financing Review; 24(1):43-61, 2002. Agency for Health Research and Quality Health Cost and Utilization Project (HCUP). Clinical Classification Software (CCS) 2005, 2004. Anderson, G. F., Steinberg, E.P., et al. Setting Payment Rates for Capitated Systems: A Comparison of Various Alternatives. Inquiry; 27:225-233, 1990. Ash, A., Porell, F., Gruenberg, L., et al. Adjusting Medicare Capitation Payments Using Prior Hospitalization Data. Health Care Financing Review; 10(4):17-29, 1989. Ash, A. S., Ellis R.P., Pope, G. C., Ayanian, J.Z., et al. Using Diagnoses to Describe Populations and Predict Costs. Health Care Financing Review; 21(3):7-28, 2000. Chang, R. E., Lai, C. L. Using Diagnosis-Based Risk Adjustment Models to Predict Individual Healthcare Expenditure under the National Health Insurance System in Taiwan. Forthcoming Journal of Formosa Medical Associate, 2005. DxCG , Inc. DxCG Risk Adjustment Software User’s Guide Release 6.1, 2002. Ellis, R. P., Ash, A. Refinements to The Diagnostic Cost Group (DCG) Model. Inquiry; 32;418-429, 1995. Ellis, R. P., Pope, G. C., Iezzoni, L. I., Ayanian, J. Z., et al. Diagnosis-Based Risk Adjustment for Medicare Capitation Payments. Health Care Financing Review; 17(3):101-128, 1996. Ettner, S. L., Frank, R. G., et al. Risk Adjustment of Mental Health and Substance Abuse Payments. Inquiry; 35:223-239, 1998. Ettner, S. L., Frank, R. G., et al. Risk Adjustment of Capitation Payments to Behavioral Health Care Carve-out: How well do existing methodologies account for psychiatric disability? Health Care Management Science; 3:159-169, 2000. Ettner, S. L., Frank, R. G., et al. Risk Adjustment Alternatives in Paying for Behavioral Health Care Under Medicaid. Health Services Research; 36(4):793-811, 2001. Ettner S. L., Johnson, S. Do Adjusted Clinical Groups Eliminate Incentives for HMOs to Avoid Substance Abusers? Evidence from the Maryland Medicaid HealthChoice Program. The Journal of Behavioral Health Services & Research; 30(1):63-77, 2003. Fowles, J. B., Weiner, J. P., et al. Taking Health Status Into Account When Setting Capitation Rates. JAMA; 276(16):1316-1321, 1996. Frakhraei, S. H., Kaelin, J. J., Conviser, R. Comorbidity-Based Payment Methodology for Medicaid Enrollees with HIV/AIDS. Health Care Financing Review; 23(2):53-68, 2001. Grimaldi P. L.: Medicae’s risk-adjusted Capitation Method. Journal of Health Care Finance; 28:105-119, 2002. HCUP website: http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp Hughes, J. S., Averill, R. F., Eisenhandler, J. Clinical Risk Groups (CRGs): A Classification System for Risk-Adjusted Capitation-Based Payment and Health Care Management. Medical Care; 42(1):81-90, 2004. Lamers, L. M., van Vliet, R. C. J. A. Multiyear Diagnostic Information from Prior Hospitalizations as a Risk-Adjuster for Capitation Payments. Medical Care; 34(6):549-561, 1996. Lamers, L. M., Vliet, R. C. J. A. Health-based Risk Adjustment: Improving the pharmacy-based cost group model to reduce gaming possibilities. European Journal of Health Economics; 4:107-114, 2003. Lee, W. C. Performance of the Johns ACG Adjustment System inTaiwan. Taipei ACG Conference, 2005. Lin, W., Chang, R. E., Hsieh, C. J., et al. Development of A Risk-Adjusted Capitation Model Based on Principal Inpatient Diagnoses in Taiwan. Journal of Formosa Medical Association; 102(9):637-643, 2003. McCall, N., Korb J. Risk Adjustment for Dually Eligible Beneficiaries Using Long-Term Care. Health Care Financing Review; 20(2):71-90, 1998. Newhouse, J. P. Risk Adjustment: Where Are We Now? Inquiry; 35:122-131, 1998. Pope, G. C., Ellis, R. P., Ash, A. S., et al. Principal Inpatient Diagnostic Cost Group Model for Medicare Risk Adjustment. Health Care Financing Review; 21(3):93-118, 2000. Pope, G. C., Adamache, K., Walash, E. G., et al. Evaluating Alternative Risk Adjuster for Medicare. Health Care Ginance Review; 20:109-129, 1998. Pope, G. C., Kautter, J., Ellis, R. P., Ash, A. S., et al. Risk Adjustment of Medicare Capitation Payments Using the CMS-HCC Model. Health Care Financing Review; 25(4):119-141, 2004. Rakovski, C. C., Rosen, A. K., Anderson, J. J., et al. Evaluation of Diagnosis-Based Risk Adjustment among Specific Subgroups: Can Existing Adjusters be Improved by Simple Modifications? Health Services & Outcomes Research Methodology; 3:57-73, 2002. Rice, N. & Smith, P. C. Capitation and Risk Adjustment in Health Care Financing: An International Progress Report. The Milbank Quarterly; 79(1):81-113, 2001. Rosen, A. K., Loveland, S., et al. Evaluating Diagnosis-Based Case-Mix Measure: How Well Do They Apply to the VA Population? Medical Care; 39(7):692-704, 2001. Shen, Y., & Ellis, R. P. How Profitable Is Risk Selection? A Comparison of Four Risk Adjustment Models. Health Economics; 11:165-174, 2002. SPSS Inc. AnwserTree 2.0 User’s Guide, 1998. Starfield, B., Weiner, J., et al. Ambulatory Care Group: A Categorization of Diagnoses for Research and Management. Health Services Research; 26(1):53-74, 1991. The Johns Hopkins Bloomberg School of Public Health. The Johns Hopkins ACG Case-Mix System, 2003. Van Vliet, R. C. J. A., Van de Ven, W. P. M. M. Capitation Payment Based on Prior Hospitalizations. Health Economics; 2:177-188, 1993. van de Ven, W. P., Ellis, R. P. Risk adjustment in competitive health plan markets. In Newhouse J.P., Culyer A. J. eds. Handbook of Health Economics; “Handbook in Economics Series”. Elsevier Science 1: 755-845, 2000. Weiner, J. P., Starfield, B. H., et al. Development and Application of a Population-Oriented Measure of Ambulatory Care Case-Mix. Medical Care; 29(5):452-472, 1991. Weiner, J. P., Starfield, B. H., et al. Ambulatory Care Practice Variation within a Medicaid Program. Health Services Research; 30(6):751-770, 1996. Weiner, J.P., Dobson, A., Maxwell, S. L., Coleman, K., et al. Risk-Adjustment Medicare Capitation Rates Using Ambulatory and Inpatient Diagnoses. Health Care Financing Review; 17(3):77-99, 1996. Weiner, J. P., Tucker, A. M., et al. The Development of a Risk-Adjusted Capitation Payment System: The Maryland Medicaid Model. Journal of Ambulatory Care Management; 21(4):29-52, 1998. Weiner, J. P., et al. The Johns Hopkins ACG Case-Mix System Documentation & Application Manual. Health Services Research & Development Center at The Johns Hopkins University School, 2000. Wrobel, M. V., Doshi, J., et al. Predictability of Prescription Drug Expenditures for Medicare Beneficiaries. Health Care Financing Review; 25(2):37-46, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34967 | - |
| dc.description.abstract | 為改善醫療費用高漲問題,許多國家的健康照護體系多採用前瞻性預算的方式支付醫療費用。在前瞻性支付體系下,為顧及健康保險的效率與公平性,最精緻的保費計算方法便是導入風險校正機制。風險校正成功與否的關鍵在於風險計價模模式的預測力,依據國際研究顯示,於計價模式中加入以診斷為基礎的風險校正因子為較能避免風險選擇,且能保有不錯模式預測力的做法之一。目前國內學者引用或自行發展的診斷群組,皆僅單獨使用門診或住院診斷建構,並無一整合所有診斷資訊的診斷群組,因此本研究欲發展結合所有診資訊斷的診斷群組,以及利用此診斷群組建構風險預測模式,並比較不同預測模式對未來醫療費用的預測能力,以提供國內健保前瞻式預算分配之參考。
本研究利用2002年和2003年的健保承保抽樣歸人檔進行分析,使用的診斷因子有國外發展的HCCs群組以及本研究利用臨床分類軟體(CCS)自行發展的CCS層級群組與CCS疾病組合群組。研究結果顯示,以HCCs或CCS層級群組加上人口統計因子的風險計價模式預測力較為良好,PR2在20%左右,預測比(PR)除少部分疾病外,值都接近於1,表示能準確估計各疾病分群的醫療費用,且本研究自行發展的CCS層級群組在疾病分群的整體預測比表現上又比HCCs更加準確,因此適合以其估算各疾病分群的預期醫療費用。 然本研究自行發展的CCS層級群組之PR2值相較於國外的HCCs層級群組稍低,原因可能為自行發展的群組其層級臨床性不如HCCs強烈,因此在未來的研究當中可再進一步加強診斷群組的臨床性,如加入醫生團隊之意見,修正原有的層級成更具有我國人口疾病嚴重度代表性的層級,並且加入用藥處方資訊,加強精神疾病和慢性病於診斷資訊使用上的不足,成為一更具有臨床性的所有診斷群組,以更精煉風險計價模式的預測力。 | zh_TW |
| dc.description.abstract | In order to contain the escalation of health care expenditure, many countries have adopted prospective budgets paying health care expenditure. Under prospective payment system, introducing risk adjustment mechanism in health insurance is considered to be able to maintain equity and efficiency. According to previous studies, the development of risk adjustment models with diagnostic information is one of most prominent approach to prevent risk selection and possess good predictability. However, only diagnostic groups based on outpatient and principal inpatient diagnoses respectively have been developed in Taiwan, and no diagnostic groups combining outpatient and inpatient diagnostic information is under development in this country. This study intends to develop risk adjusters based on all diagnostic information and compare the predictabilities of various risk adjustment models. The result can provide a reference of assigning prospective budget in Taiwan’s National Health Insurance.
2002 and 2003 NHI panel data was used to analyze in this study. The diagnostic-based risk adjusters are HCCs, CCS hierarchy groups, and CCS case-mix groups, and the later two systems were developed based on Clinical Classification Software. The results show that the PR2 and PR values of risk adjustment models with HCCs and CCS hierarchy groups perform well. The PR2s are about 20% and most PR values are close to 1, except for few specific disease subgroups. It depicts that the models can predict the expenditure of different disease subgroups accurately. And the performance of subgroup predictability in CCS hierarchy groups developing by this study is better than others, so it is suitable for calculating the expected medical expenditure of disease subgroups. However, the PR2 of CCS hierarchy groups is less then HCCs slightly. The reason may be that the clinical characteristic of CCS hierarchy was not as strong as that of HCCs. It is encouraged that the clinical characteristic should be strengthened in future study, such as consulting physicians’ opinion. Besides, we can add prescription information in risk assessments to improve the defect of only using diagnostic information in metal and chronic disease. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:37:48Z (GMT). No. of bitstreams: 1 ntu-94-R92843011-1.pdf: 444244 bytes, checksum: acfcab8ac0c7d399b11d3ed0d9bda730 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………i
中文摘要………………………………………………………………ii 英文摘要………………………………………………………………iii 目錄……………………………………………………………………iv 表目錄…………………………………………………………………v 第一章 緒論…………………………………………………………1 第二章 文獻探討……………………………………………………3 第三章 研究設計與方法……………………………………………13 第四章 研究結果……………………………………………………19 第五章 討論…………………………………………………………23 參考文獻………………………………………………………………27 附表……………………………………………………………………32 | |
| dc.language.iso | zh-TW | |
| dc.subject | 風險校正診斷群組 | zh_TW |
| dc.subject | 風險預測模式 | zh_TW |
| dc.subject | risk adjustment models | en |
| dc.subject | risk-adjusted diagnostic groups | en |
| dc.title | 建構所有診斷資訊群組及其風險預測模式 | zh_TW |
| dc.title | Developments of Risk-Adjusted Diagnostic Groups Based on All Diagnostic Information and Applications to Risk Adjustment Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志良(Jhih-Liang Yang),林文德(Wen-De Lin) | |
| dc.subject.keyword | 風險校正診斷群組,風險預測模式, | zh_TW |
| dc.subject.keyword | risk-adjusted diagnostic groups,risk adjustment models, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-09-20 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 醫療機構管理研究所 | zh_TW |
| 顯示於系所單位: | 健康政策與管理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 433.83 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
