Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34948
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳其誠(Ki-Seng Tan)
dc.contributor.authorYi-Chih Chouen
dc.contributor.author周奕志zh_TW
dc.date.accessioned2021-06-13T06:37:24Z-
dc.date.available2005-10-14
dc.date.copyright2005-10-14
dc.date.issued2005
dc.date.submitted2005-10-11
dc.identifier.citation[1]Buchmann, J.: “A subexponential algorithm for the determination of class groups and regulators of algebraic number fields.” pp. 27-41 in C. Goldstein (ed): Seminaire de Th´eorie des Nombres, Paris 1988V1989, BirkhLauser Boston 1990.
[2] Buchmann, J. and Hollinger, C.: “On smooth ideals in number fields.” J. of Number Theory 59 (1996), 82-87.
[3] Cohen, H.: “A Course in Computational Algebraic Number Theory.” Graduate Texts in Mathematics 138, Springer-Verlag, Berlin 1993.
[4] Cohen, H., Diaz y Diaz, F. and Olivier, M.:“Subexponential algorithm for class group
and unit computations.” J. Symbolic Computation 24 (1997), 433-441.
[5] Groenewegen, R.P.: “The size function for number fields.” Proceedings of the XXI Journees Arithmetiques, Journal de Theorie de Nombres de Bordeaux 13 (2001), 143-
156.
[6] Hafner, J. and McCurley, K.: “A rigorous subexponential algorithm for computation of
class groups.” Journal of the AMS 2 (1989), 837-850.
[7] LiDIA: “ A C++ Library For Computational Number Theory” Homepage:www.informatik. tu-darmstadt.de/TI/LiDIA.
[8] Lenstra, A.K., Lenstra, H.W. and Lovasz, L.: “Factoring polynomials with rational coefficients.” Math. Annalen 261 (1982), 515-534.
[9] Pari-GP, Homepage: www.parigp-home.de.
[10] Schoof, R.: “Computing Arakelov Class Groups”, Roma (2004)
[11] Shanks, D.: “The infrastructure of a real quadratic field and its applications” Proceedings of the 1972 Number Theory Conference, Boulder (1972) 217V224.
[12] Stewart, I. and Tall, D.: “Algebraic Number Theory and Fermat’s Last Theorem.” 2002 A K Peters, Ltd.
[13] “The Magma Computational Algebra System for Algebra, Number Theory and Geometry.” Homepage: magma.maths.usyd.edu.au/magma.42
[14] Van der Geer, G. and Schoof, R.: “Effectivity of Arakelov divisors and the Theta divisor of a number field.” Selecta Mathematica, New Ser. 6 (2000), 377V398. Preprint 9802121 at: http://xxx.lanl.gov/list/math.AG/9802.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34948-
dc.description.abstract本篇論文主要介紹 Buchamnn 的演算法和 Arakelov 類群zh_TW
dc.description.abstractThis thesis focuses not only on Buchmann’s algorithm for computing the class group together with the regulator of an arbitrary number field but also on the basic properties on Arakelov class groups which is relevant to Buchmann’s algorithm.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:37:24Z (GMT). No. of bitstreams: 1
ntu-94-R92221018-1.pdf: 380120 bytes, checksum: cb06947dfabbd4a6fe1405c45bc15d90 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents
1 Introduction 2
2 Basic Definitions, Notations and Results 3
2.1 Class groups, fundamental units and regulators 3
2.2 Methods for computing class number and class group 5
2.3 Computations on ideals 7
2.4 Arakelov class group 8
2.5 The idea of Buchmann's algorithm 11
3 Arakelov Class Groups 14
3.1 Inside and outside metrics on Arakelov divisors 14
3.2 The oriented Arakelov class 18
3.3 Reduced Arakelov divisors 20
4 Buchmann’s Algorithm 27
4.1 The LLL-reduced algorithm 27
4.2 Computation on reduced Arakelov divisor 32
4.3 The main steps of Buchmann’s algorithm 34
4.3.1 Finding Ic 34
4.3.2 Looking for relations 34
4.3.3 Producing a generating system 36
4.3.4 Determine the class group and the regulator 37
4.4 The complexity of Buchmann’s algorithm 38
4.5 Application the class group to the principal ideal
problem 40
dc.language.isoen
dc.subjectArakelov類群zh_TW
dc.subjectBuchmann演算法zh_TW
dc.subjectclass groupen
dc.subjectclass numberen
dc.subjectregulatoren
dc.subjectArakelov class groupen
dc.title介紹 Buchmann 的演算法和 Arakelov 類群zh_TW
dc.titleIntroduction to Buchmann's Algorithm and Arakelov Class Groupsen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree碩士
dc.contributor.oralexamcommittee紀文鎮,許志農
dc.subject.keywordBuchmann演算法,Arakelov類群,zh_TW
dc.subject.keywordArakelov class group,regulator,class group,class number,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2005-10-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
371.21 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved