請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34946完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳政忠(Tsung-Tsong Wu) | |
| dc.contributor.author | Yi-Chen Wu | en |
| dc.contributor.author | 吳異琛 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:37:22Z | - |
| dc.date.available | 2005-10-17 | |
| dc.date.copyright | 2005-10-17 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-10-11 | |
| dc.identifier.citation | 1. S. Tamura, D. C. Hurley, and J. P. Wolfe “Acoustic-phonon propagation in superlattices,” Phys. Rev. B 38(2), 1427-1449 (1988)
2. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett. 71(13), 2022-2025 (1993) 3. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B 49(4), 2313-2322 (1994) 4. M. S. Kushwaha and P. Halevi, “Band-gap engineering in periodic elastic composites,” Appl. Phys. Lett. 64(9), 1085-1087 (1994) 5. Yukihiro Tanaka, Yoshinobu Tomoyasu, and Shin-ichiro Tamura, “Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch,” Phys. Rev. B 62(11), 7387-7392 (2000) 6. Yukihiro Tanaka, Shin-ichiro Tamura, “Band structures of acoustic waves in phononic lattices,” Physica B 316-317, 237-239 (2002) 7. Tsung-Tsong Wu, Zi-Gui Huang, and S. L, “Surface and bulk acoustic waves in two-dimensional phononic crystal consistingof materials with general anisotropy,” Phys. Rev. B 69, 094301 (2004) 8. Po-Feng Hsieh, Tsung-Tsong Wu, and Jia-Hong Sun, “Three dimensional phononic bandgap FDTD calculations using a PC cluster system.” IEEE Trans. Ultrason., Ferroelect., Freq. Contr (Accepted) 9. Zhengyou Liu, Xixiang Zhang, Yiwei Mao, Y. Y. Zhu, Zhiyu Yang, C. T. Chan, and Ping Sheng, ”Locally resonant sonic materials,” Science 289, 1734-1736 (2000) 10. Zhengyou Liu, C. T. Chan, and Ping Sheng, “Three-component elastic wave band-gap material,” Phys. Rev. B 65, 165116 (2002) 11. Kin Ming Ho, Chun Kwong Cheng, Z. Yang, X. X. Zhang, and Ping Sheng, ”Broadband locally resonant sonic shields,” Appl. Phys. Lett. 83(26), 5566-5568 (2003) 12. Ping Sheng, X. X. Zhang, Z. Liu, C.T. Chan, “Locally resonant sonic materials,” Physica B338, 201-205(2003) 13. Zhengyou Liu, C. T. Chan, and Ping Sheng, “Analytic model of phononic crystals with local resonances,” Phys. Rev. B 71, 014103 (2005) 14. C. Goffaux, J. Sanchez-Dehesa, A. Levy Yeyati, Ph. Lambin, A. Khelif, J. O. Vasseur, and B. Djafari-Rouhani, “Evidence of Fano-Like interference Phenomena in locally resonant materials,” Appl. Phys. Lett. 88(22), 225502 (2002) 15. C. Goffaux, F. Maseri, J. O. Vasseur, B. Djafari-Rouhani, and Ph. Lambin, “Measurements and calculations of the sound attenuation by a phononic band gap structure suitable for an insulating partition application,” Appl. Phys. Lett. 83(2), 281-283 (2003) 16. C. Goffaux and J. Sanchez-Dehesa, “Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials,” Phys. Rev. B 67, 144301 (2003) 17. C. Goffaux, J. Sanchez-Dehesa, and Ph. Lambin, “Comparison of the sound attenuation efficiency of locally resonant materials and elastic band-gap structures,” Phys. Rev. B 70, 184302 (2004) 18. Alterman, Z. S. and Karal, F. C. “Propagation of Elastic Waves in Layered Media by Finite Difference Method,” Bull. Seism. Soc. Am. 58, 367-398 (1968) 19. Bertholf, L. D. “Numerical solution for two-dimensional elastic wave propagation in finite bars,” J. Appl. Mech. 34, 725-734 (1967) 20. Gang Wang, Xisen Wen, Jihong Wen, Lihui Shao, and Yaozong Liu, “Two-dimensional locally resonant phononic crystals with binary structures,” Phys. Rev. Lett. 93(15), 154302 (2004) 21. Matin Hirsekorn, “Small-size sonic crystals with strong attenuation bands in the audible frequency range,” Appl. Phys. Lett. 84(17), 3364-3366 (2004) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34946 | - |
| dc.description.abstract | 本文以有限差分法對聲子晶體進行波傳模擬,並設計特殊聲子晶體以期阻擋低頻頻率。一般以二種材料所組成之聲子晶體對於阻隔低頻之可聽頻率聲波需要大尺寸之幾何結構,本文則利用三種不同材料所構成之聲子晶體進行研究,以嘗試找出較小尺寸之組合。首先,我們以特定之材料組合與合理之尺寸,利用頻散關係圖觀察到的確存在位於低頻的頻溝;但是經由穿射率的探討,此利用三種不同材料之二維聲子晶體阻隔聲波之有效機制主要為共振所造成,且其共振亦發生於低頻時,結果顯示此設計得以大幅縮減週期結構所需之材料及幾何尺寸。然而,並非所有之此類聲子晶體之局部共振模態皆會造成穿射率能量之損失,因此,更藉由分析單一波數下各共振頻率時之單位晶格振動形式,以單位晶格中之位移向量總和較大者能使得低頻彈性波衰減。文中進一步改變週期性低頻聲子晶體排列數目、內部幾何結構進行分析。計算的結果顯示,透過適當的設計與安排可控制共振型聲子晶體之共振頻率與穿射率。 | zh_TW |
| dc.description.abstract | In this thesis, the sonic band gap properties of a two-dimensional periodic three-component composite are investigated. The three-component phononic crystal consists of rubber-coated lead cylinders embedded in an epoxy matrix. The FDTD method was employed to calculate the dispersion and transmission to identify acoustic gaps of three-component phononic crystals. Conventional two-component phononic crystals are not suitable to be applied to block audible and low frequency acoustic waves because of their bulkiness and high cost in applications. However, analysis of the three-component phononic crystal shows a different property to overcome the limitation. From the transmittance spectra and the dispersion relation of the in-plane mode, we see that drop in transmission coefficient corresponding to the frequency in the dispersion curve where group velocity is equal to zero. As a result, there are gaps due to resonant mechanisms in the sonic crystals. Nevertheless, not all local resonances in such phononic crystal can cause decay in the energy transmission coefficient. Therefore, by analyzing the vibrational mode of single wavenumber in unit cell under different resonant frequency, we find that unit cell with greater sum of displacement vector can cause a decay in low frequency elastic wave. Further analysis show that by varying the number of layers, geometric size, and arrangement of the phononic crystals, which consists of lead core and silicone rubber, we can control the resonance frequency and transmission coefficient of resonance type phononic crystal. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:37:22Z (GMT). No. of bitstreams: 1 ntu-94-R92543005-1.pdf: 8769312 bytes, checksum: 4e0d6d8fddadd89574c2a81448c7b265 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III 符號說明 VI 目錄 VI 圖目錄 VIII 表目錄 X 第一章 導論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 本文內容 3 第二章 有限差分法用於模擬彈性波與聲子晶體分析之理論 5 2-1彈性波動方程式與有限差分法 5 2-1-1彈性波動方程式 5 2-1-2內部格點、波源格點與邊界格點 9 2-2聲子晶體之波傳理論 12 2-2-1布拉克-彈性波動方程式 12 2-2-2布拉克-邊界條件 19 2-3個人電腦叢集平行系統 22 第三章 共振型聲子晶體之共振機制分析 27 3-1布拉格頻溝現象 27 3-2用於低頻之聲子晶體 30 3-3以穿射率分析適用低頻聲子晶體阻隔彈性波方式 32 3-4單一頻率振盪之共振機制 36 第四章 共振型聲子晶體之調變與應用 74 4-1以不同幾何尺寸之改變影響有效共振頻率 74 4-2中空鉛圓柱對於有效共振頻率之改變 76 4-3寬頻共振效應 77 第五章 結論與展望 89 5-1 結論 89 5-2 未來展望 91 附錄一 92 參考文獻 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 隔音設備 | zh_TW |
| dc.subject | 局部共振 | zh_TW |
| dc.subject | 聲子晶體 | zh_TW |
| dc.subject | 頻溝現象 | zh_TW |
| dc.subject | Local resonance | en |
| dc.subject | Phononic crystals | en |
| dc.subject | Band gap | en |
| dc.subject | Sound insulation | en |
| dc.title | 具複合填充物二維聲子晶體之局部共振分析研究 | zh_TW |
| dc.title | On the Study of Local Resonances in Two Dimensional Phononic Crystals with Composite Fillers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉佩玲(Pei-Ling Liu),吳文方(Wen-Fang Wu) | |
| dc.subject.keyword | 聲子晶體,頻溝現象,局部共振,隔音設備, | zh_TW |
| dc.subject.keyword | Phononic crystals,Band gap,Local resonance,Sound insulation, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-10-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 8.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
