請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34938
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李公哲 | |
dc.contributor.author | Yu-Hsiang Weng | en |
dc.contributor.author | 翁堉翔 | zh_TW |
dc.date.accessioned | 2021-06-13T06:37:13Z | - |
dc.date.available | 2005-10-17 | |
dc.date.copyright | 2005-10-17 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-10-12 | |
dc.identifier.citation | 李雅湘,腐質酸引起脂肪細胞分化機制之研究-對烏腳病病因的探討,國立台灣大學醫學院生化學研究所博士論文,民國八十八年六月,p.51-52。
許昊幕、黃志彬、江國瑛、許永華,以兩種濃縮法分析台灣自來水原水及清水中梨形鞭毛蟲及隱孢子蟲含量,第十六屆自來水研究發表會論文集,民國八十八年十一月,第111-119頁。 許家銘,以電場掃流超過濾分離蛋白質混合液,私立中原大學化學工程學系碩士論文,民國九十年六月。 左煒憶,以電滲透及流線電位決定薄膜之膜孔界達電位,私立中原大學化學工程學系碩士論文,民國九十年七月。 李欣樺,消毒副產物有機前質對外加電場薄膜程序之積垢影響研究,國立台灣大學環境工程學研究所碩士論文,民國九十三年六月。 Alarcon-Herrera, M.T., Bewtra, J.K. and Biswas, N. (1994) Seasonal variations in humic substances and their reduction through water treatment processes. Can. J. Civ. Eng. 21 (2), 173-179. Aoustin, E., Schäfer, A.I., Fane, A.G. and Waite, T.D. (2001) Ultrafiltration of natural organic matter. Separation and Purification Technology 22-23 (1-3), 63-78. Assemi, S., Newcombe, G., Hepplewhite, C., and Beckett, R. (2004) Characterization of natural organic matter fractions separated by ultrafiltration using flow field-flow fractionation, Water Research 38(6), 1467-1476. Bowen, W.R., Kingdon, R.S. and Sabuni, H.A.M. (1989) Electrically enhanced separation processes: the basis of in situ intermittent electrolytic membrane cleaning (IIEMC) and in situ electrolytic membrane restoration (IEMR). J. Membr. Sci. 40, 219-229. Bowen, W. R., and Sabuni, H. A. M. (1992) Pulsed Electrokinetic Cleaning Of Cellulose Nitrate Microfiltration Membranes, Ind. Eng. Chem. Res. 31(2), 515-523. Bowen, W.R., Doneva, T.A. and Yin, H.-B. (2002) Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes. J. Membr. Sci. 206 (1-2), 417-429. Carroll T., King S., Gray S. R., Bolto B. A. and Booker N. A. (2000) The fouling of microfiltration membranes by NOM after coagulation treatment. Water Research 34 (11), 2861-2868. Cheryan, M. (1998) Ultrafiltration and Microfiltration Handbook, Technomic, Pennsylvania, USA, pp.308. Chuang, C.-J., Fang. C.-W. and Tung, K.-L. (2003) Electro-microfiltration of colloidal suspensions. Separation Science and Technology 38 (4), 797-816. Ciavatta, C., Govi, M., Sitti, L., and Gessa, C. (1995) Capillary electrophoresis of humic acid fractions, Communications In Soil Science And Plant Analysis 26(19-20), 3305-3313. Cooper, F., Mees, Q., and Bier, M. (1965) Water Purification By Forced-flow Electrophoresis, Journal of the Sanitary Engineering Division Proceedings of the American Society of Civil Engineers 91, 13-25. De Nobili, M., and Fornasier, F. (1996) Assessment of the effect of molecular size on the electrophoretic mobility of humic substances, European Journal Of Soil Science 47(2), 223-229. Duguet, J.-P. and Mallevialle, J. (1998) Influence of natural organic matter on water treatment. Water Supply 16 (1/2), 504-509. Field, R.W., Wu, D. Howell, J.A. and Gupta, B.B. (1995) Critical flux concept for microfiltration fouling. J. Membrane Sci. 100 (3), 259-272. Garrison, A. W., Schmitt, P., and Kettrup, A. (1995) Capillary Electrophoresis For The Characterization Of Humic Substances, Water Res. 29(9), 2149-2159. Handbook of public water systems (2001) , HDR Engineering, Inc., pp. 477. Hanna, J.V., Johnson, W.D., Quezada, R.A., Wilson, M.A. and Xlao-Qlao, L. (1991) Characterization of aqueous humic substances before and after chlorination. Environ. Sci. Technol. 25 (6), 1160-1164. Haiber, S., Herzog, H., Burba, P., Gosciniak, B., and Lambert, J. (2001) Two-dimensional NMR studies of size fractionated Suwannee River Fulvic and Humic Acid Reference, Environ. Sci. Technol. 35 (21), 4289-4294. Henry, J.D., Lawler, L.F. and Kou, C.H. (1977) A solid/liquid separation process based on cross flow and electrofiltration. AIChE J 23, 851-859. Hiemenz, P., and Rajagopalan, R. (1997), Electrophoresis and other electrokinetic phenomena, in Principles of Colloid and Surface Chemistry, edited, pp. 534-570, Marcel Dekker Inc., New York. Hosse, M. and Wilkinson, K.J. (2001) Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength. Environ. Sci. Technol. 35 (21), 4301-4306. Huang, Y.-H., Chou, S., Perng, M.-G., Huang, G.-H. and Cheng, S.-S. (1999) Case study on the bioeffluent of petrochemical wastewater by electro-fenton method. Wat. Sci. Tech. 39 (10-11), 145-149. Hunter, R.J. (1981) The calculation of zeta potential. In Zeta Potential in Colloid Science. Academic Press. Huotari, H.M., Trägårdh, G. and Huisman, I.H. (1999a) Crossflow membrane filtration enhanced by an external dc electric filed: a review. Trans IchemE 77 (A5), 461-467. Huotari, H.M., Huisman, I.H. and Trägårdh, G.. (1999b) Electrically enhanced crossflow membrane filtration of oily waste water using the membrane as a cathode. J. Membr. Sci. 156 (1), 49-60. IHSS網站:http://www.ihss.gatech.edu/。 Jacangelo, J.G., Trussell, R.R. and Watson, M. (1997) Role of membrane technology in drinking water treatment in the United states. Desalination 113 (2-3), 119-127. Jagannadh, S.N. and Muralidhara, H.S. (1996) Electrokinetics methods to control membrane fouling. Ind. Eng. Chem. Res. 35 (4), 1133-1140. Jones, K.L. and O’Melia, C.R. (2001) Ultrafiltration of protein and humic substances: effect of solution chemistry on fouling and flux decline. J. Membr. Sci. 193 (2), 163-173. Jucker, C. and Clark, M.M. (1994) Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes. J. Membr. Sci. 97, 37-52. Kaiya, Y., Itoh, Y., Fujita, K. and Takizawa, S. (1996) Study on fouling materials in the membrane treatment process for potable water. Desalination 106 (1-3), 71-77. Kang, K.-H., Shin, H.S. and Park, H. (2002) Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Research 36(16), 4023-4032. Larson, R.A. and Weber, E.J. (1994) Reaction mechanisms in enrironmental organic chemistry. Chapter 5. Boca Raton, FL, Lewis publisher. Lazarova, Z., and Serro, W. (2002) Electromembrane separation of mineral suspensions: Influence of process parameters, Separation Science and Technology 37(3), 515-534. Lembke, C. (2002) Personal communication. Aldrich company employee. Lee, J. D., Lee, S. H., Jo, M. H., Park, P. K., Lee, C. H., and Kwak, J. W. (2000) Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment, Environ. Sci. Technol 34 (17), 3780-3788. Leenheer, J.A., Noyes, T. I. and Wershaw, R. L. (1997) Acquisition and interpretation of liquid-state 1H NMR spectra of humic and fulvic acids. in: Nuclear Magnetic Resonance Spectroscopy in Environmental Chemistry. Nanny, M.A., Minear, R. A. and Leenheer, J.A. (Eds.), pp. 295-303, Chapter 16, Oxford University Press, New York. Lentsch, S., Aimar, P., and Orozco, J. L. (1993) Enhanced Separation Of Albumin Poly(Ethylene Glycol) By Combination Of Ultrafiltration And Electrophoresis, J. Membr. Sci. 80(1-3), 221-232. Letterman, R.D., Amirtharajah, A. and O’Melia, C.R. (1999) Coagulation and flocculation. in: Water Quality and Treatment. Letterman, R.D. (Eds.), pp. 6.4, McGraw-Hill, New York.. Lin, C.-F., Huang, Y.-J and Hao, O.J. (1999) Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and pac treatment. Water Research 33 (5), 1252-1264. Maartens, A., Swart, P., and Jacobs, E.P. (2000) Membrane pretreatment: A method for reducing fouling by natural organic matter. J. Colloid Interface Sci. 221 (2), 137-142. Malcolm, R.L. and MacCarthy, P. (1986) Limitations in the use of commercial humic acids in water and soil research. Environ. Sci. Technol. 20 (9), 904-911. Meier-Haack, J., Booker, N.A. and Carroll, T. (2003) A permeability-controlled microfiltration membrane for reduced fouling in drinking water treatment. Water Research 37 (3), 585-588. Milisic, V. and Aïm, R.B. (1986) Developing a better understanding of cross-flow microfiltration. Filtration and Separation 23 (1), 28-30. Mulder, M. (1991) Basic Principles of Membrane Technology. Kluwer Academic Publishers. Myneni, S. C. B., Brown, J. T., Martinez, G. A., and Meyer-Ilse, W. (1999) Imaging of humic substance macromolecular structures in water and soils, Science 286(5443), 1335-1337. Newcombe, G.., Drikas, M., Assemi, S. and Beckett, R. (1997) Influence of characterised natural organic material on activated carbon adsorption: 1. Characterisation of concentrated reservoir water. Water Research 31(5), 965-972. Nilson, J.A. and Digiano, F.A. (1996) Influence of NOM composition on nanofiltration. J. Am. Water Works. Assoc. 88 (5), 53-66. Oussedik, S., Belhocine, D., Grib, H., Lounici, H., Piron, D.L. and Mameri, N. (2000) Enhanced ultrafiltration of bovine serum albumin with pulsed electric filed and fluidized activated alumina. Desalination 127 (1), 59-68. Pompe, S., Heise, K. H., and Nitsche, H. (1996) Capillary electrophoresis for a 'finger-print' characterization of fulvic and humic acids, J. Chromatogr. A 723(1), 215-218. Pontius, F.W. (2001) Regulatory update for 2001 and beyond. J. Am. Water Works. Assoc. 93 (2), 66-80. Qiang, Z., Chang, J.-H. and Huang, C.-P. (2002) Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research 36 (1), 85-94. Rigol, A., Vidal, M., and Rauret, G. (1998) Ultrafiltration-capillary zone electrophoresis for the determination of humic acid fractions, J. Chromatogr. A 807(2), 275-284. Schäfer, A.I., Schwicker, U., Fischer, M.M., Fane, A.G. and Waite, T.D. (2000) Microfitlration of colloids and natural organic matter. J. Membr. Sci. 171, 151-172. Schäfer, A.I., Mauch, R., Waite, T.D. and Fane, A.G. (2002) Charge effects in the fractionation of natural organics using ultrafiltration. Environ. Sci. Technol. 36 (12), 2572-2580. Schmitt-Kopplin, P., Carrison, A.W., Perdue, E.M., Freitag, D. and Kettrup, A. (1998) Capillary electrophoresis in the analysis of humic substances: Facts and artifacts. Journal of Chromatography A 807 (1), 101-109. Stevenson, F.J. (1982) Humus Chemistry. John Wiley & Sons. Thurman, E.M. (1986) Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. Junk Publishers. Vinodgopal, K., Subramanian, V., Carrasquillo, S., and Kamat, P. V. (2003) Electrophoretic assembly of naturally occurring humic substances as thin films, Environ. Sci. Technol. 37(4), 761-765. von Zumbusch, P., Kulcke, W., and Brunner, G. (1998) Use of alternating electrical fields as anti-fouling strategy in ultrafiltration of biological suspensions - Introduction of a new experimental procedure for crossflow filtration, J. Membr. Sci. 142(1), 75-86. Wakeman, R.J. and Tarleton, E.S. (1986) Experiments using electricity to prevent fouling in membrane filtration. Filtration and Separation 23, 174-176. Wakeman, R.J. and Sabri, M.N. (1995) Utilizing pulsed electric fields in crossflow microfiltration of titania suspensions. Trans IChemE 73 (A4), 455-463. Wakeman, R.J. (1998) Electrically enhanced microfiltration of albumin suspension. Trans IchemE 76 (C1), 53-59. Wakeman, R.J. and Williams, C.J. (2002) Additional techniques to improve microfiltration. Separation and Purification Technology 26 (1), 3-18. Weigert, T., Altmann, J. and Ripperger, S. (1999) Crossflow electrofiltration in pilot scale. J. Membr. Sci. 159 (1-2), 253-262. Weng, Y.-H., Chaung-Hsieh, L. H., Lee, H.-H., Li, K.-C., and Huang, C. P. (2005) Removal of arsenic and humic substances (HSs) by electro-ultrafiltration (EUF), J. Hazardous Materials B122(1), 171-176. Wershaw, R.L. (1985) Application of nuclear magnetic resonance spectroscopy for determining functionality in humic substances. in: Humic substances in soil, sediment, and water. Aiken, G.R., Micknight, D.M. and Wershaw, R.L. (Eds.), pp. 561-582, Chapter 22, John Wiley & Sons, New York. Wiesner, M.R., Hackney, J., Sethi, S., Jacangelo, J.G. and Laîné, J.-M. (1994) Cost estimates for membrane filtration and conventional treatment. J. Am. Water Works. Assoc. 86 (12), 33-41. Wilson, M.A. (1981) Applications of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter. J. Soil Sci. 32, 167-186. Yang, G..C.C., Yang, T.Y. and Tsai, S.H. (2003) Crossflow electro-microfiltration of oxide-CMP wastewater. Water Research 37 (4), 785-792. Yoo, R. S., Brown, D. R., Pardini, R. J., and Bentson, G. D. (1995) Microfiltration - A Case-Study, J. Am. Water Work Assoc. 87(3), 38-49. Yuan, W. and Zydney, A.L. (1999a) Humic acid fouling during microfiltration. J. Membr. Sci. 157 (1), 1-12. Yuan, W. and Zydney, A.L. (1999b) Effects of solution environment on humic acid fouling during microfiltration. Desalination 122 (1), 63-76. Yuan, W. and Zydney, A.L. (2000) Humic acid fouling during ultrafiltration. Environ. Sci. Technol. 34 (23), 5043-5050. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34938 | - |
dc.description.abstract | 薄膜程序為一不需相轉換的固液分離程序,然而往往因薄膜積垢問題使得操作成本增加,限制了薄膜程序的應用。腐植質被認為是造成薄膜淨水積垢的主因之一,然而微過濾程序並無法有效去除腐植質。本研究以實驗室規模的外加電場薄膜過濾模組,處理模擬水樣中之帶負電的腐植質。本研究之薄膜過濾實驗結果顯示,施加100 V電壓時,可將腐植質去除率由低於20%提升至80%以上,經由SUVA、THMPF及液態氫核磁共振的分析結果顯示,被去除的有機物主要為帶電較多、分子量子量較大且含有脂肪族-3及芳香族的部分,這些官能基易與氯反應而產生三鹵甲烷,故外加電場薄膜程序應用在去除消毒副產物之前驅物質上,深具應用潛力。再者,外加電場薄膜程序去除腐植質的機制主要是物理的分離作用,即電泳的作用,化學氧化還原雖然也有發生,但不是主要的因子。由於腐質植是相當複雜的有機物,腐植質去除率不僅與施加的電場強度有關,亦於薄膜孔徑有關。另外,外加電場亦可增加過濾通量及減少過濾阻力,增加的原因除了上述電泳之外,當外加電場大於臨界電場時,其電滲透現象則具有增加過濾通量之功能。當以脈衝式電場操作薄膜過濾,雖可減少所需電力,並且可增加過濾通量,但腐植質去除率較連續電場施加時為低,故在工程實務不建議使用。 | zh_TW |
dc.description.abstract | Membrane process is a solid-liquid operation which involves no phase transition, and therefore energy cost could be minimized. In water treatment microfiltration (MF) and ultrafiltration (UF), humic substances (HSs) is believed to be one of the important foulants which would cause flux decline and increase process cost. However, MF and UF could not remove HSs effectively due to their large pore size in comparison with HSs. In this study, a bench-scale electro-membrane filtration system was developed to treat synthetic HSs solution. The results showed that the removal of the negatively charged HSs increased from 20% to more than 80% in terms of UV254, DOC and trihalomethane formation potential (THMFP) via 100 V. Specific ultraviolent absorbance (SUVA), THMFP, and solution 1H nuclear magnetic resonance (1H NMR) results suggest that those HSs with large molecular weight and charge are removed after applying voltage through membrane. Furthermore, those aromatic and aliphatic 3 fractions have high potential to react with chlorine to produce trihalomethane. The results also demonstrate that electrophoresis dominates the removal mechanism despite the minor chemical reactions did change HSs in somewhat. The removal efficiency of HSs is not only dependent on the applied electric field strength, but also dependent on the pore size of the membrane due to inhomogeneity of HSs. In addition, the filtration flux was increased and resistance was decreased after applying electric field through membrane. When the applied electric field strength was greater than critical electric field strength, electro-osmotic flux plays important role on flux enhancement. Although applying pulsed electric field to membrane also reduces flux decline and moreover reduce the power consumption, HSs rejection was deteriorated in comparison with applying constant electric field. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:37:13Z (GMT). No. of bitstreams: 1 ntu-94-F88541105-1.pdf: 2833731 bytes, checksum: 54ddc8481e5d917e9faf9449905edf2c (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 第一章 研究緣起與目的……………………………………………..…1
1.1 研究目的…………………………………………………...1 1.2 研究架構…………………………………………………...3 第二章 文獻回顧 2.1水中天然有機物.……………………………………………5 2.1.1水中天然有機物之組成……………….…………….5 2.1.2腐植質分子量分佈及特性.………………………….7 2.1.3腐植質之電泳特性………….…………………..….10 2.1.4腐植質對淨水工程之影響….…………………..….13 2.2薄膜處理程序之簡介…..……………………………….…14 2.2.1水處理薄膜程序….……..………………………….14 2.2.2薄膜程序之問題與限制...………………………….16 2.2.3減少薄膜積垢之方法………….…………………...19 2.3外加電場掃流過濾……………………………………...…21 2.3.1粒子電動理論………...…………………………….23 2.3.2臨界電場理論………………...…………………….24 2.3.3操作因子之影響………...………………………….25 2.3.4阻力模式分析……………………………………....33 第三章 實驗內容、步驟與方法 3.1基本假設………………………………………………...…35 3.2實驗步驟與方法………………………………………...…36 3.2.1腐植質溶液之前處理……………………….……..36 3.2.2薄膜材質……………………………………..……..37 3.2.3薄膜模組及操作方式………………………..……..37 3.3實驗分析……………………………………….……..……40 3.3.1腐植質特性分析……………………………..……..40 3.3.2水質參數分析………………………………………41 3.3.2薄膜表面分析………………………………………42 第四章 結果與討論 4.1腐植質的特性分析………………………………………...45 4.1.1平均電泳動………………………………………....45 4.1.2液態氫核磁共振……………………………………47 4.2電滲透現象………………………………………………...49 4.3操作參數對通量的影響………………………………..….56 4.3.1施加電壓對通量及過濾阻力的影響……………....56 4.3.2濃度對通量及過濾阻力的影響…………………....60 4.3.3施加壓力對通量及過濾阻力的影響………………62 4.4腐植質的去除率…………………………………………...70 4.5脈衝式電壓的操作………………………………………...74 4.6去除機制的探討…………………………………………...78 4.7臨界電場的應用…………………………………………...90 4.8電力估算…………………………………………………...93 第五章 結論與建議 5.1 結論……………………………………………………….95 5.2 建議……………………………………………………….99 參考文獻…………………………………………………………...….100 附錄一:0.1 | |
dc.language.iso | zh-TW | |
dc.title | 以外加電場薄膜程序處理水中腐植質 | zh_TW |
dc.title | Removal of humic substances(HSs) by electro-membrane filtration | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 黃志彬,張慶源,林正芳,莊清榮 | |
dc.subject.keyword | 腐植質,外加電場薄膜過濾,SUVA,THMPF,液態氫核磁共振, | zh_TW |
dc.subject.keyword | humic substances (HSs),electro-membrane filtration,SUVA,THMPF,solution 1H nuclear magnetic resonance (1H NMR), | en |
dc.relation.page | 119 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-10-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。