請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34928完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝兆樞 | |
| dc.contributor.author | Jian-Jr Chen | en |
| dc.contributor.author | 陳建智 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:37:01Z | - |
| dc.date.available | 2007-01-19 | |
| dc.date.copyright | 2006-01-19 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-10-16 | |
| dc.identifier.citation | 柒、參考文獻
李佩芳。1992。大豆種子成熟後期大量表現基因之研究:分析決定 20 及 24 kD 蛋白質之基因族。碩士論文。台大植物學研究所。 陳幐彰、曾富生。1990a。台灣旱田雜草香附子種內變異之研究•I•田間與田 埂族群之形態特性變異。農林學報 39:103-116. 陳幐彰、曾富生。1990b。台灣旱田雜草香附子種內變異之研究•II•七個地區族群之形態特性之變異。中華民國雜草學會會刊 11:45-61. 曾富生、蔡憲宗、吳詩都。1997。台灣野生種大豆族群之變異研究 V. G. tomentella Hayata 及 G. dolichocarpa Tateishi et Ohashi 之遺傳變異研究:葉、莢果形態及DNA多形性。中華農藝 7 (2) :107-114. 游添榮。 1991。台灣野生種大豆Glycine formosana、G. tabacina及G. tomentella之種內變異。博士論文。中興大學農藝研究所。 湯文通、林齊強。1962。幾種在台灣發現之大豆屬野生種特性之研究。中華農學會報 新37: 15-22。 葉茂生、鄭隨和。1991。台灣豆類植物資源彩色圖鑑。行政院農業委員會出版 pp.267 葉茂生、盧英權。1986。Glycine亞屬野生種大豆生育性狀與染色體數目之變異。農林學報 35:59-80。 劉美華、葛學軍、王唯匡、許在文、蔣鎮宇。2004。香蕉的起緣及野蕉的花粉與種子傳播。自然保育季刊 47:19-23。 蔡元卿、邢禹依、鍾君怡、謝兆樞。2001。台灣野生大豆及其遠緣種之研究。中華農藝 11:217-230。 鄭少茵。1997。台灣原産多年生野生種大豆 Glycine tomentella 種內蛋白質變異性的硏究。碩士論文。台灣大學農藝研究所。 鍾君怡。2000。利用 LEA GmPM 1/9 基因族探討 Glycine dolichocarpa 與大豆屬其他物種之系統及分子演化關係。碩士論文。台灣大學農藝研究所。 鄔慧民、宋遠淳、李立家、李霞、付彬英。1999。水稻 Xa21 基因在水稻和玉米中的比較物理定位。植物學報 41(3):249-253。 Blackman, S. A., S. H. Wettlaufer, R. L. Obendorf, and A. C. Leopold. 1991. Maturation proteins associated with desiccation tolerance in soybean. Plant Physiol. 96:868-874. Bohle, U. R., H. Hilger, R. Cerff, and W. F. Martin. 1994. Non-coding chloroplast DNA for plant molecular systematics at the intrageneric level. In:Schierwater. B., B. Streit, G. P. Wagner and R. Desalle, (Eds.) Molecular ecology and evolution: Approaches and applications. p.391-403. Brown, A. H. D., J. E. Grant, J. J. Burdon, and J. P. Grace. 1984. Wild perennial Glycine species as genetic resources for soybean improvement. Soybean Genet. Newsl. 11:17-19. Chen, Z. Y., Y. I. Hsing, P. F. Lee, and T. Y. Chow. 1992. Nucleotide sequences encoding a soybean cDNA encoding an 18 kilodalton late embryogenesis aboundant protein. Plant Physiol. 99:773-774. Choi H. K., D. Kim, T. Uhm, E. Limpens, H. Lim, J. H. Mun, P. Kalo, RV. Penmetsa, A. Seres, and O. Kulikova. 2004a. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463-1502. Choi H. K, J. H. Mun, D. J. Kim, H. Zhu, J. M. Baek, J. Mudge, B. Roe, N. Ellis, J. Doyle, and G. B. Kiss. 2004b. Estimating genome conservation between crop and model legume species. Proc. Natl. Acad. Sci. USA 101:15289-15294. Cluutton-Brock, T. H., 1988. Reproductive Success. University of Chicago Press, Chicago. Dopazo, J., and F. Sobrino. 1993. A computer program for the design of PCR primers for diagnosis of highly variable genome. J. Virol. Methods 41:157-166. Doyle, J. J.,J. L. Doyle., and A. H. D. Brown. 1990c. Reproductively isolated polyploid races of Glycine tabacina (Leguminosae) had different chloroplast genome donors. Syst. Bot. 15:173-181. Doyle, J. J., J. L. Doyle, and A. H. D. Brown, 1989. 5S nuclear ribosomal gene variance in the Glycine tomentella polyploidy complex (Leguminosae). Syst. Bot. 14:398-407. Doyle, J. J., and J. L. Doyle. 1990. A chloroplast-DNA phylogeny of the wild perennial relatives of soybean (Glycine subgenus glycine):congruence with morphological and crossing groups. Evolution 44(2):371-389. Doyle, J. J., J. L. Doyle, and A. H. D. Brown, 1990a. Analysis of a polyploid complex in Glycine with chloroplast and nuclear DNA. Aust. Syst. Bot. 3:125-136. Doyle, J. J., J. L. Doyle, and A. H. D. Brown, 1990b. Chloroplast DNA polymorphism and phylogeny in the B genome of Glycine (Leguminosae: Phaseleae). Syst. Bot. 15:446-471. Doyle, J. J., J. L. Doyle, J. T. Rauscher, A. H. D. Brown, and R. G. Palmer. 2002. Genomes, multiple origins, and lineage recombination in the G. tomentella (Leguminosae) polyploidy complex: Histone H3-D gene sequences. Evolution 56:1388-1402. Doyle, J. J., J. L. Doyle, J. T. Rauscher, and A. H. D. Brown. 2003. Diploid and polyploidy reticulate evolution throughout the history of the perennial soybeans (Glycine subgenus Glycine). New Phytol. 161:121-132. Doyle, J. L., and K. L. Doyle, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15. Eberhardt, N. L., and M. Clinic. 1992. A shell program for the design of PCR primer using genetics computer group (GCG) software (7.1) on VAX/VMS Systems. BioTechniques 13:914- 916. Endler, J. A., 1986. Natural selection in the wild. Princeton University Press, Princeton, NJ. Excoffier, L., and P. E. Smouse. 1994. Using allele frequencies and geographic subdivision toreconstruct gene trees within a species: Molecular variance parsimony. Genetics 136:343-359. Feder, M. E., A. F. Bennett, W. A. Burggren, and R. B. Huey. 1987. New Directions in Ecological physiology. Cambridge University Press, Cambridge. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. Galau, G. A., and L. Dure III. 1981. Developmental biochemistry of cotton seed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by reciprocal heterologous complementary deoxyribonucleic acid-messenger ribonucleic acid hybridization. Biochemistry. 20:4169-4178. Gallavottl, A., Q. Zhao, J. Kyozuka, R. B. Meeley, M. K. Ritter, J. F. Doebley, M. E. Pe, and R. J. Schmidt. 2004. The role of barren stalk1 in the architecture of maize. Nature 432:630-635. Gepts, P. 2002. A Comparison between Crop domestication, classical plant breeding, and Genetic Engineering. Crop Sci. 42:1780-1790. Gibbons. Ann., 1991. Systematics goes molecular. Sci. 251:872-874. Grant, J. E., A. H. D. Brown, and J. P. Grace. 1984. Cytological and isozyme diversity in Glycine tomentella Hayata (Leguminosae). Aust. J. Bot. 32:665-667. Grant, W. A. S., and B. W. Bowen. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89:415-426. Halward, T., H. T. Stalker, and Kochert. 1993. Development of an RFLP linkage map in diploid peanut species. Theor. Appl. Genet. 87:379-384. Hamrick, J. L., and M. J. W. Godt, 1989. Allozyme diversity in plant species. In: Brown, A. H. D., M. T. Clegg, A. L. Kahler, and B. S. Weir, (Eds.) Plant Population Genetics, Breeding and Genetic Resources. Sinauer, Sunderland, MA. p.43-63. Hartman, G. L., T. C. Wang, and T. Hymowitz. 1992. Sources of resistance to soybean rust in perennial Glycine species. Plant Dis. 76:396-399. Hassanin, A. and E. J. P. Douzery. 1999. The tribal of family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Mol. Phylo. Evol. 13:227-243. Hermann, F. J. 1962. A revision of the genus Glycine and its immediate allies. U. S. D. A. Tech. Bull. 1268: 1-79. Hillis, D. M., C. Moritz, and B. K. Mable. 1996. Molecular systematics. 2nd ed. Sinauer, Sunderland. Hsieh, J.S., K.L. Hsieh, Y.C. Tsai and Y.I. Hsing. 2001. Each species of Glycine collected in Taiwan has a unique seed protein pattern. Euphytica 118:67-73. Hsing Y.I., J.S. Hsieh, C.I. Peng, C.H. Chou and T.Y. Chiang. 2001. Systematic status of the Glycine tomentella and G. tabacina species complexes based on ITS sequences of nuclear ribosomal DNA. J. Plant Res. 114:435-442. Hsing, Y. I. C., and S. J. Wu. 1992. Cloning and characterization of cDNA clones encoding soybean seed maturation polypeptides. Bot. Bull. Acad. Sin. 33:191-199. Hsing, Y. I. C., K. L. Hsieh, Y. C. Huang, and J. S. Hsieh. 1995a. The relationships of cultivated soybean and their wild relatives collected from Taiwan: revealed by seed proteins. Bot. Bull. Acad. Sin. 36:65-72. Hsing, Y. I. C., K. L. Hsieh, Y. C. Huang, and J. S. Hsieh. 1995b. Premature during and germination in wild soybean seeds. Taiwanias 40:73-81. Hsing, Y. I. C., R. W. Rinne, A. G. Hepburn, and R. E. Zielinski. 1990. Expression of maturation-specific genes in soybean seeds. Crop Sci. 30:1343-1350. Hudson, R. R. 1998. Island models and the coalescent process. Mol. Ecol . (4):413-418. Hymowitz, T. and R. J. Singh. 1987. Taxonomy and speciation. In:Caldwell, B. B (ed) Soybean: Improvement, production, and uses, 2nd ed. P. 23-48. American Society of Agronomy Inc., Wisconsin. Hymowitz, T., J. T. Wolley, and D. B. Peters. 1987. Preliminary investigations on the salt tolerance of wild perennial Glycine species. Soybean Genet. Newsl. 14:271-272. Hymowitz, T., Singh, R. J. and Larkin, R. P. 1990. Long-distance dispersal: the cause for the allopolyploid Glycine tabacina (Labill) Benth. and Glycine tomentella Hayata in the west-central Pacific. Micronesica 23:5-13. Keim, P., W. Beavis, J. Schupp, and R. Frestone. 1992. Evaluation of soybean RFLP marker diversity in adapted germplasm. Theor. Appl. Genet. 85:205-212. Kimura, M., 1968. Evolutionary rate at the molecular level. Nature 217:624-626. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. Kimura, M. 1983. Rare variant alleles in the light of the neutral theory. Mol. Biol. Evol. 1:84-93. King, J. L., and T. H. Jukes. 1969. Non-Darwinian evolution. Science 164:788-789. Kollipara, K. P., R. J. Singh, and T. Hymowitz. 1993. Genomic diversity in aneudiploid (2n=38) and diploid (2n=40) Glycine tomentella revealed by cytogenetic and biochemical methods. Genome 36: 391-396. Kollipara, K. P., R. J. Singh, and T. Hymowitz. 1994. Genome diversity and multiple origins of tetraploid (2n=78, 80) Glycine tomentella Hayata. Genome 37:448-459. Kollipara, K. P., R. J. Singh, and T. Hymowitz. 1997. Phylogenetic and genomic relationshipin the genus Glycine Willd. based on sequences from the ITS region of nuclear rDNA. Genome 40:57-68. Kumar, P. S., T. Hymowitz. 1989. Where are the diploid (2n=2x=20) genome donors of Glycine Willd. (Leguminosae, Papilionoideae)? Euphytica 40:221-226. Ladizinsky, G. and T. Hymowitz. 1979. Seed protein electrophoresis in taxonomic and evolutionary studies. Theor. Appl. Genet. 54:145-151. Lee, P. F., T. Y. Chow, Z. Y. Chen, and Y. I. C. Hsing. 1992. Genomic nucleotide sequence of soybean seed maturation protein GmPM9 gene. Plant Physiol. 100:2121-2122. Li. Zenglu., and R. L. Nelson. 2001. Genetic Diversity among Soybean Accessions from Three Countries Measured by RAPDs. Crop Sci. 41:1337-1347. Loux, M. M., R. A. Liebl, and T. Hymowitz. 1987. Examination of wild perennial Glycine species for glyphosate tolerance. Soybean Genet. Newsl. 14:268-271. Masterson J. 1994. Stomatal size in fossil plant: evidence for polyploidy in majority of angiosperms. Science 264:421-424. Mullis, K., F. Foloona, S. Scharf, R. Saiki, G. Horn, and H. Erilich. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51:263-273. Nakashima, K., I. Nobuhisa, M. Deshimaru, M. Nakai, T. Ogawa, Y. Shimohigashi, Y. Fukumaki, M. Hattori, Y. Sakaki, S. Hattori, and M. Ohno. 1995. Accelerated evolution in the protein-coding regions is universal in Crotalinae snake venom gland pfospholipase A2 isozyme genes. Proc. Natl. Acad. Sci. USA 92:5605-5609. Newell, C. A., and T. Hymowitz. 1982. Successful wide hybridization between the soybean and a wild perennial relative, G. tomentella Hayata. Crop Sci. 22: 1062-1065. Ohara, M., Y. Shimamoto, and T. Sanbuichi. 1989. Distribution and ecological features of wild soybeans (Glycine soja Sieb. et Zuce.) in Hokkaido. J. Fac. Agr. Hokkaido Univ. 64:43-50. Ohta, T., 1993. A examination of the generation-time effect on molecular evolution. Proc. Natl. Acad. Sci. USA 90:10676-10680. Pantalone, V. R., and W. J. Kenworthy. 1989. Salt tolerance in Glycine max and perennial Glycine. Soybean Genet. Newsl. 16:145-146. Ram, H. H., Pushpendra, K. Singh, and Ranjit. 1989. Glycine soja is a source of resistance Biher Hairy caterpillar, Spilosoma (=Diacrisia) obliqua Wallace, in soybean. Soybean Genet. Newsl. 16:52-53. Rosenberg, L. A., and R. W. Rinne. 1988. Protein synthesis during natural and precocious soybean seed (Glycine max [L.] Merr.) maturation. Plant Physiol. 87:474-478. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. Cold Spring Harbor Laboratory Press. Sanchez Roberto, Ursula Pieper, Francisco Melo, Narayanan Eswar, Marc A. Martí-Renom, M.S. Madhusudhan, Nebojsa Mirkovic, and Andrej Sali. 2000. Protein structure modeling for structural genomics. Nat. Struct. Biol. 7:986-990. Sanger, R. F., S. Nicklen, and A. R. Coulson. 1997. DNA sequencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA 74:5462-5476. Schlueter, JA., P. Dixon., C. Granger, D. Grant D., L. Clark., JJ. Doyle., and RC. Shoemaker. 2004. Mining EST databases to resolve evolutionary events in major crop species. Genome 47 (5):868-876. Sgarammella, V., and S. D. Ehrlich. 1978. Use of the T4 polynucleotide ligase in the joining of flush-ended DNA segments generated by restriction endonuclease. Eur. J. Biochem. 86:531. Shih, M. D., S. C. Lin, J. S. Hsieh, C. H. Tsou, T. Y. Chow, T. P. Lin and Y. I. C. Hsing. 2004. Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Plant Mol. Biol. 56:689-703. Singh, R. J., K. P. Kollipara, and T. Hymowitz, 1989. Ancestors of 80- and 78-chromosome Glycine tomentella Hayata (Leguminosae). Genome 32:796-801. Singh, R. J., K. P. Kollipara, and T. Hymowitz. 1987. Further data on the genomic relationships among wild perennial species (2n=40) of the genus Glycine Willd. Genome 30:166-176. Stalker, H. T., J. P. Phillips, J. P. Murphy, and T. M. Jones, 1994. Variation of isozyme patterns among Arachis species. Theor. Appl. Genet. 87:746-755. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595. Tateishi, Y. and H. Ohashi. 1992. Taxonomic studies on Glycine of Taiwan. J. Jpn. Bot. 67:127-147. Templeton, A. R., E. Routman and C. A. Phillips, 1995. Separating population structure from population history: a cladistic analysis the geographical distribution of mitochondrial DNA haplotypes in the tiger sapamander, Ambystoma tigrinum. Genetics 140:767-782. Thompson, J., D. Gibson, F. Plewniak, F. Jeanmougin and D. G. Hiiggins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24:4876-4882. Tsang, C. W., G. E. Bers, and K. Hancock. 1985. Enzyme-Linked lmmunoelectro transfer blot Enzyme-Mediated lmmunossay. Plenum Press, New York and London. pp.389-414. Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18:6531-6535. Yiu, T. J. and F. S. Thseng. 1997. Population variation of wild soybean in Taiwan. I. Variation of plant characterists in natural populations of Glycine tabacina, G. formosana and G. tomentella. J. Agric. Assoc. China 177:28-40. Zebeau, M. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application No. 0534858. Zhu, Hy., H. K. Choi, D. R. Cook, and R. C. Shoemaker. 2005. Bridging model and crop legumes through comparative genomics. Plant Physiol. 137:1189-1196. Zhu, T, Schupp JM, Oliphant A, and P. Keim. 1994. Hypomethylated sequences: Characterization of the duplicate soybean genome. Mol. Gener. Genet. 244:638-645. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34928 | - |
| dc.description.abstract | 台灣是一年生野生大豆分佈的南界,同時也是多年生野生大豆分佈的北界,因此我們使用了大豆第四群 LEA 蛋白的 GmPM16 和 GmPM28 基因族 (gene families) 為標誌,嘗試去探討大豆屬物種之分子演化關係。
本試驗使用栽培種大豆、野生大豆及 13 個大豆遠緣種共 15 個品系,根據已知之栽培種大豆 cDNA 序列,設計引子,將參試品系分別選殖並加以定序,定序結果以鄰近連接法 (neighbor-joining tree) 與最小間距網狀圖 (minimum spanning network) 比較分析其系統關係。 試驗結果顯示,大豆屬物種的種子全蛋白以 SDS-PAGE 進行分析,每一個物種均有其獨特的電泳圖譜;但若以 GmPM16 及 GmPM28的抗體進行西方墨點轉漬法進行分析,卻無法明確的區分。Genomic DNA 序列分析結果,GmPM16 和 GmPM28 兩個基因族的基因片段在多年生大豆遠緣種皆比一年生栽培種有較高的歧異度,由其 ks/ka 值推論這兩個基因族在演化動力 (evolutionary forces) 上並未符合中性假說 (neutrality hypothesis)。除此之外,本試驗顯示GmPM16 和 GmPM28 基因族的基因片段具有低的 π 値 (核苷酸歧異度)及高的 Hd 値 (基因型歧異度),此表示此族群早期曾長時間維持低度的有效族群,之後族群快速成長,經歷的時間足以累積突變,但卻不足以累積大量的序列變異。另外以 genomic DNA、intron DNA 和 ORF 序列,利用不同分析方法所建構的系統關係樹和最小間距網狀圖結果並不一致,由此推測此兩個基因族可能是彼此具有不同的溯祖時間;依據分群結果推論,採集自台灣台東的 tom039 和起源自澳洲的基因組 DDD3D3、AAB’B’、AA的親緣關係為較接近。 | zh_TW |
| dc.description.abstract | Taiwan is the southernmost region of the distribution for annual wild soybean species and the northernmost region of the distribution of the perennial ones. In this study, we used GmPM16 and GmPM28 gene families, which belong to the fourth group of late embryogenesis abundant (LEA) proteins of soybean, as the genetic markers to assess the molecular relationships of the genus Glycine.
We surveyed sequence variations in the cultivated soybean, wild soybean, and thirteen accessions of the perennial soybean relatives. The PCR primers were designed based on the soybean cDNA sequences. We examined the phylogenetic relationships by total sequences, introns and open reading frame (ORF) using the neighbor-joining and minimum spanning network methods. In the present study, SDS-PAGE analysis of the seed proteins from many Glycine species suggested that each species had unique protein profiles that varied in the total number of bands and their relative motilities. However, the results of western blot with GmPM16 and GmPM28 antibodies indicated no significant difference among them. According to total sequences of the 2 soybean seed gene families, the genetic diversities were higher in the perennial soybean relative accessions than those of the annual soybeans. The value of Ks/Ka also suggested the evolutionary forces of these two gene families were deviated from the neutrality hypothesis. Furthermore, the species, based on the sequences of those two gene families, were with lowerπ(nucleotide diversity) values and higher Hd (haplotype diversity) values. The results suggested that these populations were expanded after a period of low effective population size; rapid population growth enhanved the retention of new mutations. The evolutionary relationship among the entries was inconsistent as indicated in phylogenetic trees and minimum spanning network, which were constructed based on total sequences, introns, or ORFs. This indicated that the two gene families had their unique coalescence time scale in the phylogenetic trees. On the basis of clustering results, we proposed that the genome of tom039 collected in eastern Taiwan has a close relationship to the Australian-originated genomes DDD3D3, AAB’B’, and AA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:37:01Z (GMT). No. of bitstreams: 1 ntu-94-R91621105-1.pdf: 1699845 bytes, checksum: 0559d1fb5e406b3dd494f92155d3e875 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目 錄
誌謝 英文摘要 .................................................................. 8 中文摘要 .................................................................. 10 壹、緒言 .................................................................. 11 貳、前人研究 .................................................................. 13 叁、材料與方法 .................................................................. 23 肆、結果 .................................................................. 35 伍、討論 .................................................................. 97 陸、結論 .................................................................. 114 捌、參考文獻 .................................................................. 116 圖 目 錄 圖一、 (A) SDS-PAGE 分析種子全蛋白電泳圖 (B) 利用GmPM16/29 蛋白抗體進行所有參試品系西方墨點分析 (C) 利用 GmPM28 蛋白抗體進行所有參試品系西方墨點分析 ............. 36 圖二、 (A) 利用 GmPM29 設計引子進行所有參試品系 PCR 反應 (B) 利用 GmPM16 設計引子進行所有參試品系 PCR 反應 (C) 利用 GmPM28 設計引子進行所有參試品系 PCR 反應 ............. 39 圖三、 根據 GmPM29 基因 genomice DNA 序列構築之系統關係樹 ............. 77 圖四、 根據 GmPM29 基因 intron DNA 序列構築之系統關係樹 ............. 78 圖五、 根據 GmPM29 基因 ORF 序列構築之系統關係樹 ............. 79 圖六、 根據 GmPM16 基因 genomice DNA 序列構築之系統關係樹 ............. 81 圖七、 根據 GmPM16 基因 intron DNA 序列構築之系統關係樹 ............. 82 圖八、 根據 GmPM16 基因 ORF 序列構築之系統關係樹 ............. 83 圖九、 根據 GmPM28 基因 genomic DNA 序列構築之系統關係樹 ............. 85 圖十、 根據 GmPM28 基因 ORF 序列構築之系統關係樹 ............. 86 圖十一、 根據 GmPM29 基因 genomic DNA 序列構築之親緣網狀圖 ............. 87 圖十二、 根據 GmPM29 基因 intron DNA 序列構築之親緣網狀圖 ............. 89 圖十三、 根據 GmPM29 基因 ORF 序列構築之親緣網狀圖 ............. 90 圖十四、 根據 GmPM16 基因 genomic DNA 序列構築之親緣網狀圖 ............. 91 圖十五、 根據 GmPM16 基因 intron DNA 序列構築之親緣網狀圖 ............. 93 圖十六、 根據 GmPM16 基因 ORF 序列構築之親緣網狀圖 ............. 94 圖十七、 根據 GmPM28基因 genomic DNA 序列構築之親緣網狀圖 ............. 95 圖十八、 根據 GmPM28基因 ORF 序列構築之親緣網狀圖 ............. 96 表 目 錄 表一、 十五個參試種原的系統代號、染色體數、基因組、生長習性、採集地 ......... 24 表二、 GmPM29 基因 length of nucleotide sequences、nucleotide content、haplotype、haplotype diversity、nucleotide diversity 分析 ......... 42 表三、 GmPM29 基因 length of nucleotide sequences、number of conserved sites、number of variable sites、number of parsim-info sites、number of singleton sites、Transition、Transversion、Transition/Transversion、Tajima’s D、Ks/Ka 分析 ......... 43 表四、 GmPM16 基因 length of nucleotide sequences、nucleotide content、haplotype、haplotype diversity、nucleotide diversity 分析 ......... 44 表五、 GmPM16 基因 length of nucleotide sequences、number of conserved sites、number of variable sites、number of parsim-info sites、number of singleton sites、Transition、Transversion、Transition/Transversion、Tajima’s D、Ks/Ka 分析 ......... 45 表六、 GmPM28 基因 length of nucleotide sequences、nucleotide content、haplotype、haplotype diversity、nucleotide diversity 分析 ......... 48 表七、 GmPM28 基因 length of nucleotide sequences、number of conserved sites、number of variable sites、number of parsim-info sites、number of singleton sites、Transition、Transversion、Transition/Transversion、Tajima’s D、Ks/Ka 分析 ......... 49 表八、 GmPM29、GmPM16 和 GmPM28 基因一年生近緣種與多年生遠緣種 nucleotide diversity 分析 ......... 50 表九、 GmPM29 基因 length of ORF sequences、number of conserved sites、number of variable sites、number of parsim-info sites、number of singleton sites、number of wobble code ......... 53 表十、 GmPM29 基因片段各品系演繹胺基酸序列之分子量、胺基酸數、淨帶電量、pI 値 ......... 54 表十一、 各參試品系 GmPM29胺基酸組成份分析 ......... 55 表十二、 GmPM29 基因之 wobble code ......... 58 表十三、 GmPM16 基因 length of ORF sequences、number of conserved sites、number of variable sites、number of parsim-info sites、number of singleton sites、number of wobble code ......... 59 表十四、 GmPM16 基因片段各品系演繹胺基酸序列之分子量、胺基酸數、淨帶電量、pI 値 ......... 60 表十五、 各參試品系 GmPM16胺基酸組成份分析 ......... 61 表十六、 GmPM16 基因之 wobble code ......... 64 表十七、 GmPM28 基因 length of ORF sequences、number of conserved sites、number of variable sites、number of parsim-info sites、number of singleton sites、number of wobble code ......... 65 表十八、 GmPM28 基因片段各品系序列演繹胺基酸之分子量、胺基酸數、淨帶電量、pI 値 ......... 66 表十九、 各參試品系 GmPM28 胺基酸組成份分析 ......... 67 表二十、 GmPM28 基因之 wobble code ......... 69 表二十一、 GmPM29 基因所有參試品系 ORF 序列相似度 (%) 比對 ......... 70 表二十二、 GmPM16 基因所有參試品系 ORF 序列相似度 (%) 比對 ......... 71 表二十三、 GmPM28 基因所有參試品系 ORF 序列相似度 (%) 比對 ......... 72 表二十四、 max GmPM16 及 max GmPM29 胺基酸序列於 TIGR (http://www.tigr.org/tdb/tgi/plant.shtml) 搜尋比對結果 ......... 74 表二十五、 max GmPM28 胺基酸序列於 TIGR (http://www.tigr.org/tdb/tgi/plant.shtml) 搜尋比對結果 ......... 75 附 表 目 錄 附表一、 引子設計之步驟及原則 ....................................... 124 附表二、 GmPM29 基因 PCR 反應混合物成分 ....................................... 125 附表三、 GmPM16 基因 PCR 反應混合物成分 ....................................... 126 附表四、 GmPM28 基因 PCR 反應混合物成分 ....................................... 127 附表五、 GmPM29 基因 PCR 反應條件 ....................................... 128 附表六、 GmPM16 基因 PCR 反應條件 ....................................... 129 附表七、 GmPM28 基因 PCR 反應條件 ....................................... 130 附表八、 確認轉型成功與否 PCR 反應混合物成分 ....................................... 131 附表九、 確認轉型成功與否 PCR 反應條件 ....................................... 132 附 錄 目 錄 附錄一、 GmPM29 基因各品系 genomic DNA 序列並列比對 ..................... 133 附錄二、 GmPM29 基因各品系 intron DNA 序列並列比對 ..................... 147 附錄三、 GmPM29 基因各參試品系胺基酸序列並列比對 ..................... 153 附錄四、 GmPM29 基因 Exon 及 ORF 序列 ..................... 156 附錄五、 GmPM16 基因各品系 genomic DNA 序列並列比對 ..................... 170 附錄六、 GmPM16 基因各品系 intron DNA 序列並列比對 ..................... 191 附錄七、 GmPM16 基因各參試品系胺基酸序列並列比對 ..................... 203 附錄八、 GmPM16 基因 Exon 及 ORF 序列 ..................... 206 附錄九、 GmPM28 基因各品系 genomic DNA 序列並列比對 ..................... 220 附錄十、 GmPM28 基因各參試品系胺基酸序列並列比對 ..................... 224 附錄十一、 GmPM28 基因 Exon 及 ORF 序列 ..................... 225 | |
| dc.language.iso | zh-TW | |
| dc.subject | 大豆 | zh_TW |
| dc.subject | Lea 第四群基因族 | zh_TW |
| dc.subject | Glycine | en |
| dc.subject | Group 4 Lea Gene Family | en |
| dc.title | 利用 Lea 第四群基因族探討大豆屬物種之親緣系統及分子演化關係 | zh_TW |
| dc.title | Study on Phylogenetic and Molecular Relationship in the Genus Glycine, Using Group 4 Lea Gene Family | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃懿秦,林順福,盧虎生,邢禹依 | |
| dc.subject.keyword | Lea 第四群基因族,大豆, | zh_TW |
| dc.subject.keyword | Group 4 Lea Gene Family,Glycine, | en |
| dc.relation.page | 233 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2005-10-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
