請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34921
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱子豪 | |
dc.contributor.author | Hsin-Chih Li | en |
dc.contributor.author | 李信志 | zh_TW |
dc.date.accessioned | 2021-06-13T06:36:52Z | - |
dc.date.available | 2010-10-26 | |
dc.date.copyright | 2006-01-06 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-11-04 | |
dc.identifier.citation | 林傑斌、劉明德 2002 地理資訊系統GIS理論與實務,台北:文魁資訊股份有限公司
楊正甫、應敏貞 2003 物件導向分析與設計,台北:文魁資訊股份有限公司 歐陽嶠暉 2003 下水道工程學,三版再修訂,台北:長松文化興業股份有限公司 駱尚廉、楊萬發 2002 環境工程(二)下水道工程,二版,台北:文魁資訊股份有限公司 營建署 2002 下水道資料庫及維護管理系統建置計畫-期末報告,台北:營建署 經營情報研究會 2002 系統分析, 設計與開發導論,劉雅涵譯,台北縣:博碩文化 財團法人臺灣營建營研究院 2002 國土資訊系統應用於公共建設(全生命週期)管理機制之研究,台北:行政院公共工程委員會 Budd, Timothy 1992. 物件導向程式設計導論;俞旭昇譯,台北:維科出版社 Chua, C. E. H, Chiang, R. H. L. & Lim, E. P. 2002. On Conceptual Micro-Object Modeling, Journal of Database Management, 13(3):1-16 Crise, S., Idolyantes, E., Brinton, E., Booth, B. and Zeilier, M. 2000. ArcGIS Water Utilities Data Model, Redlands: ESRI ESRI, 2003. Creating Compatible CAD Data For ArcGIS Software, ESRI Technical Paper ESRI, 2003. Using CAD in ArcGIS, ESRI Technical Paper ESRI, 2003. CAD and GIS in 1998, ESRI Technical Paper Hardy, P.G. 1998. Map Production from An Active Object Database, Using Dynamic Representation and Automated Generation at http://www.laser-Scan.com/ /pdf/bcs98pgh.pdf Hardy, P.G. 2000. Multi-Scale Database Generalization For Topographic Mapping, Hydrography and Web-Mapping, Using Active Object Techniques, IAPRS, Vol. XXXIII, ISPRS Amsterdam, Netherlands, July 2000 or online at http://www.laser-Scan.com/papers/isprs2000pgh_1436.pdf Hardy, P.G., Woodsford P. 2000. Incremental Updating using the Gothic Versioned Object Database with the Hydrographic S57 ENC and SOFT Spatial Object Transfer Formats, ICA/ISPRS Workshop on Incremental Updating and Versioning of Spatial Database, Amsterdam, Netherlands, July 2000 Heikkila, E. J. 1998. GIS is Dead; Long Live GIS, Journal of the American Planning Association, v64: 350-360 Hornsby, K. and Egenhofer, M. J. 2000. Identity-based Change: A Foundation for Spatio-temporal Knowledge Representation, Int. J. Geographical Information Science, 14(3): 207-224. Khoshafian, S. and Abnous, Razmik 1995. Object Orientation. 2nd ed., New York:John Wiley & Sons Leung, Y., Leung, K. S. & He, J. Z. 1999. A Generic Concept-based Object-oriented Geographical Information system, Int. J. Geographical Information Science, 13(5): 475-498. Longley, P. A., Goodchild M. F., Maguire, D. J. and Rhind, D. W. 2001. Geographic Information Systems and Science, New York:John Wiley & Sons Miller, H. J. (In Press) What about People in Geographic Information Science?, New York:John Wiley & Sons Ott, Thomas and Swiaczny, Frank 2001. Time-integrative Geographic Information Systems - Management and Analysis of Spatial-Temporal Data, Germany: Springer Peng, Zhong-Ren and Tsou, Ming-Hsiang 2003. Internet GIS – Distributed Geographic Information Services for Internet and Wireless Networks, New Jersey: John Wiley & Sons Shi, W., Yang, B. & Li, Q. 2003. An Object-oriented Data Model for Complex Objects in Three-dimensional Geographical Information Systems, Int. J. Geographical Information Science, 17(5): 411-430. Torrens, P.M. & Benenson, I. 2005. Geographic Automata Systems, Int. J. Geographical Information Science, 19(4): 385-412. Winter, S. & Nittel, S. 2003. Formal Information Modeling for Standardization in the Spatial Domain, Int. J. Geographical Information Science, (17)8:721-741 Woodsford P. 1995. The Significance of Object-Orientation for GIS IUSM Working Group on GIS/LIS, September 25-28, Hannover, Germany Worboys, Michael F. 1995. GIS: A Computing Perspective, London: Taylor & Francis Worboys, M. 2005. Event-oriented Approaches to Geographic Phenomena, Int. J. Geographical Information Science, 19(1): 1-28. Wachowicz, Monica 1999. Object-Oriented Design for Temporal GIS, London: Taylor & Francis Zeiler, Michael 2001. Exploring ArcObjects Vol.1 – Applications and Cartography, Redlands: ESRI Zeiler, Michael 1999. Modeling Our World, Redlands: ESRI http://kitkat.wvu.edu:8080/files/2226.1.Nalishebo_Kaunda_Thesis.pdf | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34921 | - |
dc.description.abstract | 地理資訊系統之應用己為許多學科所廣泛使用,對國內土木工程而言,資料數值建立多於規劃設計上使用,然今日追求工程資料永續應用及著重設施管理維護時,發現早期資料建置欠缺完善之規劃,而重新調查費用及資料殘缺情形,使主管機關在推動資訊管理化怯步不前,因此配合國內工程計畫管考及實施情形,構築一個支援工程全生命週期之地理資訊資料模式,將有助於現有工程主管機關納入行政系統中,逐步實施工程資料蒐集及管理工作中,解決長期面臨之資料困境。
現有地理資訊系統在工程應用上仍以現況管理為主,無法納入規劃設計資料於管理範疇,也延續規劃資料於後續應用階段時所參考,而傳統地理資料模式的圖層架構欠缺時序儲存及應用能力,因此導入工程全生命週期之概念,配合工程界之習慣操作方式及計畫管理導向,建構一個含時空關係及工程設施物件導向之關聯性之資料模式,應為可嘗試之解決方案。 本研究即是應用時空地理學之資料庫架構,萃取其資料時序記錄方式及處理步驟,再以物件導向之觀念,建立各生命週期階段工程物件階層架構及關連性,再解決物件間傳遞、繼承、比例尺等特殊問題,再引用新物件控制各階段時序變化,期待使後續發展應用系統時能更符合工程界需求。 鑑於各工程類別資料項目不同,其生命週期內資料傳遞及計畫間執行關聯性也有不同,將以下水道工程為範例解說各生命階段資料展示及操作程序,並擬定下水道資料物件模型,另以「計畫」物件為時間控制因子,串聯全生命週期內不同時序之資料轉換,做為本研究之成果。 | zh_TW |
dc.description.abstract | Geographical information system (GIS) has been widely applied in many subjects. For the civil engineering in Taiwan, the establishment of data value is usually applied in planning and design; however, while looking for the continuous application of construction data and focus on the maintenance and management of facilities, it is discovered that the data established in early period did not have complete planning. Consequently, the govern institution could not promote information management positively due to the cost of re-investigation and missing data. Therefore, constructing a geographical information data model that could support the whole life cycle of construction and cooperate with the management, review and execution of construction plan in Taiwan could facilitate present govern institution of construction to conclude in administrative system, carry out the collection and management of construction data gradually, and solve the data difficulty existed for a long period of time.
Status quo management is still the major construction application for GIS. It could not include planning design data into management scope, and extend planning data for reference in the follow up application stage. Furthermore, the layer framework of traditional geographical data model does not have time sequence storage and application ability; therefore, a possible solution is to introduce the concept of whole life cycle of construction, and cooperate with custom operation manner and plan management orientation of construction industry to construct an associated data model that contains spatial-temporal relationship and construction facility object orientation. This research applies the database framework of spatial-temporal geography, extracts its record of data’s time sequence and management process, and use the idea of object-oriented to establish the level framework and association of construction object in each life cycle. Finally is to solve special problems among objects, such as communication, inheritance and scale, and then control the change of time sequence in each stage by new object, and expect the development of application system could more conform to the need of construction industry in the future. Because the category data item of each construction is different, the data communication in life cycle and execution association between plans are different. Therefore, sewer construction is taken as the example to explain the data display and operation procedure of each life stage, and draw up sewer data object model; furthermore, “planning” object is used as the control factor of time to link the data transform of different time sequence in life cycle, and as the result of this research. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:36:52Z (GMT). No. of bitstreams: 1 ntu-94-P92228004-1.pdf: 1953850 bytes, checksum: 85285106aaa32eed11c416ee080a2546 (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 摘要 I
英文摘要 II 目錄 IV 表次 VI 圖次 VII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第二章 文獻回顧探討 5 第一節 工程全生命週期 5 第二節 空間物件導向資料模式 7 第三節 時空(Spatial-Temporal)資料架構及版本(Version) 12 第四節 國內現有下水道資料建置方式 16 第三章 研究方法 21 第一節 關鍵問題之解決 21 第二節 研究架構與流程 23 第三節 研究方法 28 第四章 生命週期物件模型建構 33 第一節 領域界定與情境說明 33 第二節 工程物件設計原則 38 第三節 工程物件架構模式 45 第五章 下水道資料模式應用 50 第一節 下水道工程生命週期特性 50 第二節 下水道物件架構分析 53 第三節 下水道物件操作模式 60 第四節 與國內外下水道系統比較 66 第六章 結論與未來研究 69 第一節 結論 69 第二節 未來研究 72 參考文獻 74 【中文部份】 74 【英文部份】 74 | |
dc.language.iso | zh-TW | |
dc.title | 應用空間物件導向資料模式於工程全生命週期-以下水道資料為例 | zh_TW |
dc.title | Spatial Object-Oriented Data Model for the Whole Life-Cycle Engineering project - A case of “Sewer Data model” | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孫志鴻,陳哲銘 | |
dc.subject.keyword | 地理資訊系統,物件導向,工程全生命週期,時空關係, | zh_TW |
dc.subject.keyword | GIS,Object-Oriented,Spatial-Temporal Relationship, | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2005-11-07 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 1.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。