Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖中明(Chung-Min Liao)
dc.contributor.authorBerry Yun-Hua Chouen
dc.contributor.author周韻華zh_TW
dc.date.accessioned2021-06-13T06:35:45Z-
dc.date.available2006-01-19
dc.date.copyright2006-01-19
dc.date.issued2005
dc.date.submitted2006-01-10
dc.identifier.citationAdams WJ, Conard B, Ethier G., Brix KV, Paquin PR, Di Toro, DM. 2000. The challenges of hazard identification and classification of insoluble metals and metal substances for the aquatic environment. Human and Ecological Risk Assessment 6, 1019-1038.
Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for zinc. Public Health Service. U.S. Department of Health and Human Services. GA.
Agency for Toxic Substances and Disease Registry (ATSDR). 2003a. Toxicological profile for zinc. Draft for Public Comment. U.S. Department of Health and Human Services. GA.
Agency for Toxic Substances and Disease Registry (ATSDR). 2003b. Public Health Statement for zinc. CAS# 7440-66-6 U.S. Public Health Service. Department of Health and Human Services.
Ang AHS, Tang WH. 1984. Probability concepts in engineering planning and design, Volume 2: Decision, Risk, and Reliability. John Wiley and Sons, NY.
Ansari MS, Miller WJ, Neathery MW, Lassiter JW, Gentry RP, Kincaid RL. 1976. Zinc metabolism and homeostasis in rats fed a wide range of high dietary zinc levels. Proceedings of the Society for Experimental Biology and Medicine 152, 192-194.
Barron MG. 1990. Bioconcentration. Environmental Science and Technology 24, 1612-1618.
Beek B. 1991. Contribution to the Assessment. In: Nagel R, Loskill R. (eds) Bioaccumulatioon in aquatic systems. Proceedings of an International Workshop, Berlin 1990. VCH, Weinheim New York Basel Cambridge. p 1–5.
Bergman HL, Dorward-King EJ. 1997. Reassessment of Metals Criteria for Aquatic Life Protection. SETAC. FL. p 1-81.
Bodar CWM, Pronk MEJ, Sijm DTHM. 2005. The European union risk assessment on zinc and zinc compounds: the process and the facts. Intergrated Environmental Assessment and Management 1, 301-319.
Bourne DWA. 1995. Mathematical modeling of pharmacokinetic data. Lancaster, Penn: Technomic Publishing Company. p 139.
Burmaster DE, Anderson PD. 1994. Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments. Risk Analysis 14, 477-481.
Chen HC. 1989. Farming the small abalone, Haliotis diversicolor supertexta, in Taiwan. In: Hahn KO. (ed) Handbook of Culture of Abalone and Other Marine Gastropods. CRC Press. FL. p 265-283.
Chen JC, Lee WC. 1999. Growth of Taiwan abalone Haliotis diversicolor supertexta, in Taiwan. In: Hahn KO. (ed) Handbook of Culture of Abalone and Other Marine Gastropods. CRC Press. FL. p 265-283.
Connell D, Lam P, Richardson B, Wu R. 1999. Introduction to ecotoxicology. Blackwell Science. MA. p19-28.
Connell DW. 1998. Bioaccumulation of chemicals by aquatic organisms. In: Schüürmann G, Markert B. (eds) Ecotoxicology. John Wiley & Sons. p 439-450.
Conroy PT, Hunt JW, Anderson BS. 1996. Validation of a short-term toxicity test endpoint by comparison with longer-term effects on larval red abalone Haliotis rufescens. Environmental Toxicology and Chemistry 15, 1245-1250.
Crane M, Whitehouse P, Comber S, Watts C, Giddings J, Moore DRJ, Grist E. 2003. Evaluation of probabilistic risk assessment of pesticides in the UK: Chlorpyrifos use on top fruit. PEST Management Science 59, 512-526.
Cullen AC, Frey HC. 1998. Probabilistic techniques in exposure assessment. Plenum. NY. p 59-80.
Domingo JL. 1994. Metal-induced developmental toxicity in mammals: a review. Journal of Toxicology and Environmental Health 42, 123-141.
Ecological Committee on FIFRA Risk Assessment Methods (ECOFRAM).1999. ECOFRAM aquatic and terrestrial final draft reports, USEPA. Available from <www.epa.gov/oppefed1/ecorisk/index.htm>
Eisler R. 1993. Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish Wildlife Service Biological Report 10.
Ferrari B, Mons R, Vollat B, Fraysse B, Paxeus N, Giudice RL, Pollio A, Garric J. 2004. Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient. Environmental Toxicology and Chemistry 23, 1344-1354.
Finley B, Paustenbach D, 1994. The benefits of probabilistic exposure assessment: three case studies involving contaminated air, water, and soil. Risk Analysis 14, 53-73.
Ford L. 2001. Development of chronic aquatic water quality criteria and standards for silver. Water Environment Research 73, 248-253.
Frey HC. 1992. Quantitative analysis of uncertainty and variability in environmental policy making. Environmental Science and Engineering Fellows Program Reports, American Association for Advancement of Science. Washington, DC. 67p.
Frey HC, Rhodes DS. 1996. Characterizing, simulating, and analyzing variability and uncertainty: An illustration of methods using an air toxics emissions example. Human and Ecological Risk Assessment 2, 762-797.
Frey HC, Rhodes DS. 1998. Characterizing and simulation of uncertain frequency distribution: Effect of distribution choice, variability, uncertainty, and parameter dependence. Human and Ecological Risk Assessment 4, 423-468.
Geyer HJ, Rimkus GG, Scheunert I, Kaune A, Kettrup KWSA, Zeeman M, Muir DCG, Hansen LG, Mackay D. 2001. Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans. In: Beek B (eds) The handbook of environmental chemistry. Springer-Verlag. Berlin. p 1-166.
Giam CS, Ray LE, Anderson RS, Fries CR, Lee R, Neff JM, Stegeman JJ, Thomas P, Tripp MR. 1987. Pollutant responses in marine animals: the program. In: Giam CS, Ray LE (eds) Pollutant studies in marine animals. CRC Press. FL. p 2-13.
Gibaldi M, Perrier D. 1982. Pharmacokinetics, 2nd ed. Marcel Dekker. NY.
Gross-Sorokin MY, Grist EPM, Cooke M, Crane M. 2003. Uptake and depuration of 4-nonylphenol by the benthic invertebrate Gammarus pulex: How important is feeding rate? Environmental Science and Technology 37, 2236-2241.
Guthrie RK, Davis EM, Cherry DS, Murray HE. 1979. Biomagnification of heavy metals by organisms in a marine microcosm. Bulletin of Environmental Toxicology 21, 53-61.
Hahn KO. 1989. Biotic and abiotic factors affecting the culture of abalone. In: Hahn KO (ed) Handbook of Culture of Abalone and Other Marine Gastropods. CRC Press. FL. p 113-283.
Harrison SE, Klaverkamp JF. 1989. Uptake, elimination and tissue distribution of dietary and aqueous cadmium by rainbow trout (Salmo gairdneri Richardson) and lake whitefish (Coregonus clupeaformis Mitchill). Environmental Toxicology 8, 87-97.
Helton JC, Shiver AW. 1996. A monte carlo procedure for the construction of complementary cumulative distribution functions for comparison with the EPA release limits for radioactive waste disposal. Risk Analysis 16, 43-55.
Hill AV. 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Journal of Physiological (London) 4, 40.
Holford NHG, Sheiner LB. 1981. Understanding the dose-effect relationship- clinical-application of pharmacokinetic-pharmacodynamic models. Clinical Pharmacokinetics 6, 429-453.
Janssen CR, De Schamphelaere K, Heijerick D, Muyssen B, Lock K, Bossuyt B, Vangheluwe M, Van Sprang P. 2000. Uncertainties in the environmental risk assessment of metals. Human Ecology Risk Assessment 6, 1003-1018.
Jeng MS, Jeng WL, Hung TC, Yeh CY, Tseng RJ, Meng PJ, Han BC. 2000. Mussel Watch: a review of Cu and other metals in various marine organisms in Taiwan, 1991-98. Environmental Pollution 110, 207-215.
Keller F, Giehl M, Czock D, Zellner D. 2002. PK-PD curve-fitting problems with the Hill equation? Try one of the 1-exp functions derived from Hodgkin, Douglas or Gompertz. International Journal of Clinical Pharmacology and Therapeutics 40, 23-29.
Knauer K, Behra R, Sigg L. 1997. Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environmental Toxicology and Chemistry 16, 220-229.
Lalonde RL. 1992. Pharmacodynamics. In: Evans WE, Schentag JJ, Jusko WJ. (eds) Applied pharmacokinetics. Lippincott Williams and Wilkins. NY. 4, 1-33.
Leblanc GA. 1995. Trophic-level differences in the bioconcentration of chemicals: implications in assessing environmental biomagnification. Environmental Science and Technology 29, 154-160.
Legierse KCHM, Verhaar HJM, de Bruijn JHM, Herman JLM. 1999. Analysis of the time-dependent acute aquatic toxicity of organophosphorus pesticides: the critical target occupation model. Environmental Science and Technology 33, 917-925.
Liao CM, Lin MC. 2001. Acute toxicity modeling of rainbow trout and silver sea bream exposed to waterborne metals. Environmental Toxicology 16, 349-360.
Liao CM, Lin MC, Chen JS, Chen JW. 2002a. Linking biokinetics and consumer-resource dynamics of zinc accumulation in pond abalone Haliotis diversicolor supertexta. Water Research 36, 5102-5112.
Liao CM, Chen BC, Lin MC, Chiu HM, Chou YH. 2002b. Coupling toxicokinetics and pharmacodynamics for predicting survival of abalone (Haliotis diversicolor supertexta) exposed to waterborne zinc. Environmental Toxicology 17, 478-486.
Liao CM, Ling MP. 2004. Probabilistic risk assessment of abalone Haliotis diversicolor supertexta exposed to waterborne zinc. Environmental Pollution 127, 217-227.
Liao CM, Ling MP, Chen JS. 2003. Apprasing zinc bioaccumulation in abalone Haliotis diversicolor supertexta and alga Gracilaria tenuistipitata var. liui by probabilistic analysis. Aquaculture 217, 285-299.
Liao CM, Chen BC, Tsai JW, Chen JW, Ling MP, Chou YH. 2004. A parsimonious AUC-based biokinetic method to estimate relative bioavailable zinc to abalone Haliotis diversicolor supertexta. Aquaculture 232, 425-440.
Lin MC, Liao CM. 1999. 65Zn(II) accumulation in the soft tissue and shell of abalone Haliotis diversicolor supertexta via the alga Gracilaria tenuistipitata var. liui and the ambient water. Aquaculture 178, 89-101.
Llobet JM, Domingo JL, Colomina MT, Mayayo E, Corbella J. 1988. Subchronic oral toxicity of zinc in rats. Bulletin of Environmental Contamination Toxicology 41, 36-43.
Markert B. 1997. Distribution and biogeochemistry of inorganic Chemicals in the environment. In: Schuurmann G., Markert B. (eds) Ecotoxicology. John Wiley. NY. p 165-215.
Mason CF. 1990. Pollution: causes, effects, and control. In: Harrison RM. (eds) Biological aspects of freshwater pollution. Cambridge, Royal Society of Chemistry. p 1-166.
McCarty LS, Mackay D. 1993. Enhancing ecotoxicological modeling and assessment. Environmental Science and Technology 27, 1719-1728.
McGeer JC, Brix KV, Skeaff JM, De Forest DK, Brigham SI, Adams WJ, Green AS. 2003. Inverse relationship between bioconcentration factor and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. Environmental Toxicology and Chemistry 22, 1017-1037.
Moore DRJ, Caux PY. 1997. Estimating low toxic effects. Environmental Toxicology and Chemistry 16: 794-801.
Moore DRJ, Sample BE, Suter GW, Parkhurst BR, Teed RS. 1999. A probabilistic risk assessment of the effects of methylmercury and PCBs on mink and kingfishers along east fork poplar creek, Oak ridge, Tennessee, USA. Environmental Toxicology and Chemistry 18, 2941-2953.
Morel FMM, Hering JG. 1993. Reaction rates, rate constants, and mechanisms: Analysis of kinetic data. In: Morel FMM, Hering JG. (eds) Principles and Applications of Aquatic Chemistry. Wiley. p 102-123.
Moriarty F. 1975. “Exposure and residues” in organochlorine insecticides: persistent organic pollutants. Moriarty F. (ed) Academic Press. UK. p 29-72.
Nagel R, Loskill R. 1991. Bioaccumulatioon in aquatic systems. Proceedings of an International Workshop. VCH, Weinheim New York Basel Cambridge.
National Academy of Sciences (NAS) 1980. Mineral tolerances of domestic animals. National Research Council. Washington, DC.
Pennington DW, Payet J, Hauschild M. 2004. Aquatic ecotoxicological indicators in life-cycle assessment. Environmental Toxicology and Chemistry 23, 1796-1807.
Richardson CA. 2001. Oceanography and marine biology. Oceanography and Marine Biology 39, 103-164.
Saldien V, Vermeyen KM, Wuyts FL. 2003. Target-controlled infusion of rocuronium in infants, children, and adults: a comparison of the pharmacokinetic and pharmacodynamic relationship. Anesthesia and Analgesia 97, 44-49.
Sandstead HH. 1994. Understanding zinc: recent observations and interpretations. Journal of Laboratory and Clinical Medicine 124, 322-327.
Schroeder HA, Nason AP, Tipton IH, Balassa JJ. 1967. Essential trace metals in man: zinc. Relation to environmental cadmium. Journal of Chronic Diseases 20, 179-210.
Sch&uuml;&uuml;rmann G, Markert B. 1998. Ecotoxicology: ecological fundamentals, chemical exposure, and biological effects. John Wiley & Sons. NY.
Sijm DTHM, Schipper M, Opperhuizen A. 1993. Toxicokinetics of halogena ted benzenes in fish-lethal body burden as a toxicological end-point. Environmental Toxicology and Chemistry 12, 1117-1127.
Singhagraiwan T, Doi M. 1993. Seed production and culture of a tropical abalone, Haliotis asinine Linne. The Eastern Marine Fisheries Development Center. Thailand. p 31.
Society for Environmental Toxicology and Chemistry (SETAC). 1994. Final report of the aquatic risk assessment and mitigation dialog group. SETAC foundation for environmental education. FL. 220p.
Suter GW. 1995. Fundamentals of aquatic toxicology, effects, environmental fate and risk assessment. In: Rand GM. (ed) Introduction to ecological risk assessment for aquatic toxic effects. Taylor and Francis. Washington, DC. p 803-816.
Traas TP, van Wezel AP, Hermens JLM, Zorn M, van Hattum AGM, van Leeuwen CJ. 2004. Environmental quality criteria for organic chemicals predicted from internal effect concentrations and a food web model. Environmental Toxicology and Chemistry 23, 2518-2527.
Tressou J, Crepet A, Bertail P, Feinberg MH, Leblanc JC. 2004. Probabilistic exposure assessment to food chemicals based on extreme value theory. Application to havy metals from fish and sea products. Food and Chemical Toxicology 42, 1349-1358.
Tsai JW, Chou YH, Chen BC, Liang HM, Liao CM. 2004. Growth toxicity bioassays of abalone Haliotis diversicolor supertexta exposed to waterborne Zinc. Bulletin of Environmental Contamination and Toxicology 72, 70-77.
Tuey DB. 1980. Toxicokinetics. In: Hodgson E, Guthrie FE. (ed) Introduction to biochemical toxicology. Elsevier. NY. p 40-66.
U.S. Environmental Protection Agency (USEPA). 1985. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. NTIS-PB85-227049. Office Water. Washington, DC.
U.S. Environmental Protection Agency (USEPA). 1992. Framework for ecological risk assessment. Washington, DC.
U.S. Environmental Protection Agency (USEPA). 1995. Water quality criteria documents for the protection of aquatic life in ambient water. EPA 820-B-96-001. Office of Water, Washington, DC.
U.S. Environmental Protection Agency (USEPA). 1998. Guidelines for ecological risk assessment. EPA/630/R/95/002F. Washington, DC.
Vallee BL, Flachuk KH. 1993. The biochemical basis of zinc physiology. Physiological Reviews 73, 79-118.
Van der Hoeven N, Noppert F, Leopold A. 1997. How to measure no effect. Part Ι: Towards a new measure of chronic toxicity in ecotoxicology. Introduction and workshop results. Environmetrics 8, 241-248.
Vengpedersen P, Modi NB. 1993. A system approach to pharmacodynamics - input- effect control-system analysis of central-nervous-system effect of alfentanil. Journal of Pharmaceutical Sciences 82, 266-272.
Venitz J. 1995. Pharmacokinetic-pharmacodynamic modeling of reversible drug effects. In: Derendorf H, Hochhaus G. (eds) Handbook of pharmacokinetic/ pharmacodynamic correlation. CRC Press. FL. p 1-34.
Verhaar HJM, de Wolf W, Dyer S, Legierse KCHM, Seinen W, Herman JLM. 1999. An LC50 vs time model for the aquatic toxicity of reactive and receptor-mediated compounds. Consequences for bioconcentration kinetics and risk assessment. Environmental Science and Technology 33, 758-763.
Wagner JG. 1968. Kinetics of pharmacologic response. Ι. Proposed relationships between response and drug concentration in the intact animal and man. Journal of Theoretical Biology 20, 173-201.
Wang WX, Ke CH. 2002. Dominance of dietary intake of cadmium and zinc by two marine predatory gastropods. Aquatic Toxicology 56, 153-165.
Warila J, Batterman S, Passino-Reader DR. 2001. A probabilistic model for silver bioaccumulation in aquatic systems and assessment of human health risks. Environmental Toxicology and Chemistry 20, 432-441.
Wastney ME, Aamodt RL, Rumble WF, Henkin RI. 1986. Kinetic analysis of zinc metabolism and its regulation in normal humans. American Journal of Physiolog 251, R398-405.
Weatherley AH, Lake PS, Rogers SC. 1980. Zinc pollution and the ecology of the freshwater environmental. In: Nriagu JO. (ed) Zinc in the environmental. Vol. I. Wiley. NY. p 337-418.
Weiss JN. 1997. The Hill equation revisited: uses and misuses. FASEB Journal 11, 835-841.
Winter S. 1996. Cadmium uptake kinetics by freshwater abalone soft body under hard and soft water conditions. Chemosphere 32, 1937-1948.
Woo YT, Lai DY, Arcos JC, Argus MF. 1988. Chemical induction of cancer: structural bases and biological mechanisms. Vol. IIIC. Natural, metal, fiber and macromolecular carcinogens. Academic Press. San Diego. p 488-489.
Yamamoto K, Sawada Y, Iga T. 1996. Pharmacodynamic analysis of contractile potentiation by cholinesterase inhibitors in rats. Journal of Pharmacokinetics and Biopharmaceutics 24(4), 327-348.
Yang HS, Ting YY. 1984. Studies on the availability of the abalone (Haliotis diversicolor supertexta Lischke) culture in southern Taiwan. Bulletin of Taiwan Fisheries Research Institute 37, 145-154.
Yang HS, Ting YY. 1986. Artificial propagation and culture of abalone (Haliotis diversicolor supertexta Lischke). Bulletin of Taiwan Fisheries Research Institute 40, 195-201.
Zar JH. 1999. Biostatistical Analysis. fourthed. Prentice-Hall Inc. USA.
Zeeman M. 1997. Aquatic toxicology and ecological risk assessment: US-EPA/OPPT perspective and OECD interactions. In: Zelikoff JT, Lynch J, Schepers J (eds) Ecotoxicology: responses, biomarkers, and risk Assessment. Organization for Economic Cooperation & Development, Paris, published for the OECD by SOS Publications, Fair Haven NJ. p 89–108.
行政院農委會漁業署。2001。http://www.fa.gov.tw。
行政院農委會漁業署。2003。中華民國台閩地區漁業統計年報。行政院農委會漁業署。
沈林琥。2001。生理為基礎之藥理動力及動態模式研析台灣烏腳病地區養殖魚類砷累積。台大農業工程研究所博士論文。195pp.
陳健民。2003。環境毒物學。新文京開發出版有限公司。26pp.
陳柏青。1999。食物及水體中鋅在養殖九孔組織分佈與動力學分析。台大農業工程研究所碩士論文。85pp.
陳柏青。2004。水域生態系中魚介類對金屬傳輸與生物攝取之結構與機制。台大生物環境系統工程研究所博士論文。155pp.
詹榮桂。1980。九孔耗氧量與水中溶氧量關係之探討。台大海洋研究所碩士論文。 p 43-58.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34858-
dc.description.abstract本研究主要目的為發展以內部效應濃度(Internal effect concentration, IEC)為基礎之環境品質標準(environmental quality criteria, EQC),用以保護養殖九孔暴露於含鋅水域之存活與成長模式。本研究流程以美國環保署(U.S. EPA)於1998年提出之生態風險評估為主架構,加入不同地區之現地生物累積資料,結合一階雙區塊之生物累積模式(bioaccumulation model)與三參數之希爾方程式模式(hill equation model),重建九孔體內累積鋅濃度之劑量與反應曲線,並以機率之方法加以求取使九孔死亡不超過10%之劑量來做為建構風險門檻值模式及急、慢性毒之環境品質標準。風險門檻值模式之推導,係以變動靈敏度分析下最具統計顯著效應之水中鋅濃度與九孔對鋅之排除速率二參數進行多變數非線性之迴歸分析所求得。急性毒之環境品質標準主要以IEC及生物累積因子預測而得,而慢性毒之環境品質標準則主要應用急慢性之比值(ACR)加以推導。上述模式內所使用之參數皆隨地域而變。本研究以蒙地卡羅之機率分析方法模擬模式中之參數不確定性與變異性,並提供統計之信賴區間予決策者,以增加其評估特定含鋅養殖生態系之決策彈性與靈活性。由本研究獲知,頭城、口湖、安平三地之九孔養殖池之急性毒環境品質標準中位數範圍為0.32 - 0.33 μg ml-1;而慢性毒環境品質標準之中位數範圍則為0.047 - 0.048 μg ml-1。本研究以機率架構為基礎發展風險門檻值模式及急、慢性之環境品質標準,將有助於提供政府相關部門制定隨地域不同養殖池水質管理之依據,以及九孔受鋅污染之體內影響濃度規範參考值。zh_TW
dc.description.abstractThe purpose of this thesis is to develop mechanistic models to accurately quantify environmental quality criteria (EQC) and to predict a risk threshold for the survival and growth of farmed abalone Haliotis diversicolor supertexta exposed to waterborne zinc (Zn) based on a probabilistic internal effect concentration (IEC)-based modeling framework. We couple a first-order two-compartment bioaccumulation model and a reconstructed dose-response profile based on a three-parameter Hill equation model associated with a field bioaccumulation study to form a probabilistic model to determine the risk threshold and the acute and chronic EQC based on a 10% probability of exceeding the abalone 10% IEC (IEC10) for site-specific abalone farms. Sensitivity analysis reveals that waterborne Zn concentration (Cw) and abalone depuration rate (k2) have a significant effect on Zn levels in abalone. Using a multiple nonlinear regression analysis with Cw and k2 as parameters, a predictive risk threshold equation that can be used with a variety of site-specific conditions was developed for the survival protection of farmed abalone. The acute EQC (a-EQC) is predicted from IECs and a field-derived bioaccumulation factors, whereas a statistical procedure with an acute-to-chronic value is used to derive chronic EQC (c-EQC) based on bioaccumulation. Field bioaccumulation study demonstrates a linear relationship between water and tissue Zn concentrations in abalone and algae. Our model, designed for simplicity and theoretical insight, yields explicit mathematical results through a probabilistic analysis to capture EQC modeling methodology in a more realistic way by analyzing computationally through Monte Carlo simulation technique that propagates parameter uncertainty/variability throughout the model, providing decision makers with credible range information and increased flexibility in establishing a specific Zn level in aquacultural ecosystems. Here we show that the median a-EQC range from 0.32 – 0.33μ g ml-1, whereas the median c-EQC are 0.047 – 0.048 &micro;g ml-1 for selected abalone farms. We believe that this probabilistic dose-based framework is an effective method for conceptualizing a public policy decision vis-&agrave;-vis establishing a mechanistically-based site-specific acceptable acute and chronic EQC and a specific reasonable risk threshold for better management and restoration of the rapidly degrading aquacultural ecosystems.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:35:45Z (GMT). No. of bitstreams: 1
ntu-94-R92622048-1.pdf: 1648784 bytes, checksum: 533277917cc78c23aa0effab3a5dac32 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 IX

壹、前言 1

貳、研究動機與目的 3
2.1 研究動機 3
2.2 研究目的 5

參、文獻回顧 6
3.1 標的化學物質 6
3.2 標的生物 10
3.3生物累積與生物動力學模式 13
3.4藥理動態學模式(PD) 16
3.5機率性生態風險評估 19

肆、材料與方法 23
4.1 生物累積模式(Bioaccumulation model) 25
4.2 九孔體內鋅濃度(Cm)模式建構 28
4.3 九孔體內生物累積因子(BAFm)模式建構 29
4.4 環境品質標準模式 30
4.5 內部效應濃度(IEC10)模式 33
4.6 風險門檻值模式(Risk Threshold Model) 34
4.7 不確定與靈敏度分析(Uncertainty/Sensitivity Analysis) 35
4.7.1 模式參數化(Model Parameterization) 36
4.7.2 蒙地卡羅分析(Monte Carlo Analysis) 39


伍、結果 40
5.1 野外推導之生物累積因子 40
5.2 模式推導之九孔體內鋅濃度與靈敏度分析 42
5.2.1 模式推導之九孔體內鋅濃度(Cm)與靈敏度分析 42
5.2.2 模式推導之九孔體內生物累積因子(BAFm) 45
5.3 隨地域而變之內部效應濃度(IEC10) 47
5.4 隨地域而變之風險門檻值模式(Risk Threshold Model) 49
5.5 環境品質標準 54

陸、討論 57
6.1外部效應濃度(EEC)與內部效應濃度(IEC)之關聯性 57
6.2 風險門檻值模式 58
6.3 環境品質標準模式 60
6.4 模式應用 61

柒、結論 64

捌、未來研究建議 67

參考文獻 68
附錄 78
dc.language.isozh-TW
dc.subject隨地域而變之環境品質標準zh_TW
dc.subject九孔zh_TW
dc.subject鋅zh_TW
dc.subject毒性門檻值zh_TW
dc.subject風險zh_TW
dc.subject機率zh_TW
dc.subjectAbaloneen
dc.subjectRisken
dc.subjectProbabilisticen
dc.subjectSite-specific environmental quality criteriaen
dc.subjectZincen
dc.subjectToxicity thresholden
dc.title以劑量為基礎之機率架構制定隨地域而變之養殖九孔暴露於含鋅水域之環境品質標準zh_TW
dc.titleA Probabilistic Dose-Based Approach to Derive Site-Specific Environmental Quality Criteria for Farmed Abalone Haliotis diversicolor supertexta Exposed to Zincen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉振宇(Chen-Wuing Liu),喻新(Hsin Yu),林明炤(Ming-Chao Lin),陳瑞昇(Jui-Sheng Chen)
dc.subject.keyword九孔,隨地域而變之環境品質標準,機率,風險,毒性門檻值,鋅,zh_TW
dc.subject.keywordAbalone,Site-specific environmental quality criteria,Probabilistic,Risk,Toxicity threshold,Zinc,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2006-01-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved