Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34852
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張文亮
dc.contributor.authorHsing-Jui Wangen
dc.contributor.author王興睿zh_TW
dc.date.accessioned2021-06-13T06:35:37Z-
dc.date.available2011-07-29
dc.date.copyright2011-07-29
dc.date.issued2011
dc.date.submitted2011-07-25
dc.identifier.citation1. 河川水質現地處理之礫間接觸處理工程手冊,2008。行政院環境保護署。
2. 張初福,2009。牡礪殼礫間接觸處理水質之經濟分析。國立台灣大學生物環境系統工程學研究所碩士論文,未出版,台北。
3. 郭正翔、石.岡、張文亮,2010。二重疏洪道礫間接觸牡蠣殼模場水質淨化之影響。農業工程學報,56(2),83-96。
4. Abu-Lail, N. I. and N. I. Camesano, 2003. Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109. Environmental Science Technology, vol. 37, no. 10, pp. 2173-2183.
5. Ahimou, F., M. J. Semmens, P. J. Novak, and G. Haugstad, 2007. Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Applied and Environmental Microbiology, vol. 73, no. 9, pp. 2897-2904.
6. Alpkvist, E. and I. Klapper, 2007. Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Science Technology, vol. 55, no. 8-9, pp. 265–273.
7. American Society for Microbiology. (2000, July 11). Biofilms: online manual. In Measuring biofilm depth (chap. 19). Retrieved from http://www.personal.psu.edu/faculty/j/e/jel5/biofilms
8. Auger, S., E. Krin, S. Aymerich, and M. Gohar, 2006. Autoinducer 2 affects bioflm formation by Bacillus cereus. Applied and Environmental Microbiology, vol. 72, pp. 937–941.
9. Bakke, R., R. Kommedal, and S. Kalvenes, 2001. Quantification of biofilm accumulation by an optical approach. Journal of Microbiological Methods, vol. 44, pp. 13-26.
10. Bakke, R., W. G. Characklis, M. H. Turakhia, and An-I. Yeh, 1990. Modeling a monopopulation biofilm system: Pseudomonas aeruginosa. In: W.G. Characklis, K.C. Marshall (Eds.), Biofilms. New York: Wiley.
11. Beer, D. D., P. Stoodley, F. Roe, and Z. Lewandowski, 1994. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and Bioengineering, vol. 43, pp. 1131-1138.
12. Beer, D. D., P. Stoodley, and Z. Lewandowski, 1996. Liquid flow and mass transport in heterogeneous biofilms. Water Research, vol. 30, no. 11, pp. 2761-2765.
13. Beyenal, H. and Z. Lewandowski, 2002. Internal and external mass transfer in biofilms grown at various flow velocities. Biotechnology Progress, vol. 18, pp. 55-61.
14. Bouwer, E. J. and P. B. Crowe, 1988. Biological processes in drinking water treatment. Journal of American Water Works Association, vol. 80, no. 9, pp. 82-93.
15. Bryers, J. D., 1984. Biofilm formation and chemostat dynamics: pure and mixed culture considerations. Biotechnology and Bioengineering, vol. 26, pp. 948-958.
16. Camesano, T. A. and B. E. Logan, 2002. Probing bacterial electrosteric interactions using atomic force microscopy. Environmental Science Technology, vol. 34, pp. 3354-3362.
17. Chang, H. T. and B. E. Rittmann, 1987. Mathematical modeling of biofilm on activated carbon. Environ. Sci. Techno, vol.21, pp. 273-279.
18. Chang, H. T. and B. E. Rittmann, 1988. A comparative study of biofilm on activated carbon. Journal of Water Pollution Control Federation, vol. 60, pp. 362-368.
19. Chang, H. T., B. E. Rittmann, D. Amar, R. Heim, O. Ehlinger, and Y. Lesty, 1991. Biofilm detachment mechanisms in a liquidfluidized bed. Biotechnology and Bioengineering, vol. 38, pp. 499-506.
20. Chambless, J. D., 2008. A 3D computer model investigation of biofilm detachment and protection mechanisms. Unpublished doctoral dissertation, Montana State University, Bozeman, Montana.
21. Characklis, W. G., 1990. Biofilm processes. In: W. G. Characklis, K. C. Marshall (Eds.), Biofilms. New York: Wiley.
22. Characklis, W. G., M. G. Trulear, J. D. Bryers, and N. Zelver, 1982. Dynamics of biofilm processes: methods. Water Research, vol. 16, pp. 1207-1216.
23. Characklis, W. G., M. H. Turakhia, and N. Zelver, 1990. Transport and interfacial transfer phenomena. In: W. G. Characklis, K. C. Marshall (Eds.), Biofilms. New York: Wiley.
24. Costa-Pierce, B. A., A. Desbonnet, P. Edwards, and D. Baker, 2005. Urban Aquaculture. Cambridge, MA: CABI Publishing.
25. Garny, K., T. R. Neu, H. Horn, F. Volke, and B. Manz, 2010. Combined application of 13C NMR spectroscopy and confocal laser scanning microscopy—Investigation on biofilm structure and physico-chemical properties. Chemical Engineering Science, vol. 65, pp. 4691-4700.
26. Heijnen, J. J., 1984. Biological industrial wastewater treatment minimizing biomass production and maximizing biomass concentration. Unpublished doctoral dissertation, Delft University of Technology, Delft.
27. Heydorn, A., A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersboll, and S. Molin, 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology, vol. 146, pp. 2395-2407.
28. Hoehn, R. C. and A. D. Ray, 1973. Effects of thickness on bacterial film. Journal of Water Pollution Control Federation, vol. 45, no. 11, pp. 2302-2320.
29. Hsueh, Y. H., E. B. Somers, D. Lereclus, and A. C. L. Wong, 2006. Bioflm formation by Bacillus cereus is infuenced by PlcR, a Pleiotropic regulator. Applied and Environmental Microbiology, vol. 72, pp. 5089–5092.
30. Iliuta, I. and F. Larachi, 2006. Dynamics of cells attachment, aggregation, growth and detachment in trickle-bed bioreactors. Chemical Engineering Science, vol. 61, pp. 4893-4908.
31. Ivanov, V., O. Stabnikova, P. Sihanonth, and P. Menasveta, 2006. Aggregation of ammonia-oxidizing bacteria in microbial biofilm on oyster shell surface. World Journal of Microbiology and Biotechnology, vol. 22, pp. 807-812.
32. Kreikenbohm, R. and W. Stephen, 1985. Application of a twocompartment model to the wall growth of Pelobacter acidigallici under continuous culture conditions. Biotechnology and Bioengineering, vol. 27, pp. 296-301.
33. Kurokura, H., 2004. The importance of seaweeds and shellfishes in Japan. Bulletin of Fisheries Research Agency Supplement, vol. 1, pp. 1-4.
34. Laopaiboon, L., S. J. Hall, and R. N. Smith, 2003. The effect of an aldehyde biocide on the performance and characteristics of laboratory-scale rotating biological contactors. Journal of Biotechnology, vol. 102, pp. 73-82.
35. Lee, C. H., D. K. Lee, M. A. Ali, and P. J. Kim, 2008. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Waste Management, vol. 28, pp. 2702-2708.
36. Lettinga, G. A., F. M. Van-Velsen, S. W. Hobma, W. DeZeeuw, and A. Klapwijk, 1980. Use of the upflow sludge blanket (USB) reactor concept for biological waste water treatment especially for anaerobic treatment. Biotechnology and Bioengineering, vol. 22, pp. 699-734.
37. Lewandowski, Z. and J. P. Boltz, 2011. Biofilms in water and wastewater treatment. In: Peter Wilderer (Editor(s)-in-Chief), Treatise on Water Science., Oxford: Elsevier.
38. Liu, Y. and Joo-H. Tay, 2001. Detachment forces and their influence on the structure and metabolic behavior of biofilms. World Journal of Microbiology and Biotechnology, vol.17, pp. 111-117.
39. Lovatelli, A., 2006. Bivalve farming: an overview of world production. Paper presented at the 2006 Symposium on AQUA. Abstract retrieved January 20, 2011, from https://www.was.org/meetings/AbstractData.asp?AbstractId=10786
40. Luna, E., G. Dominguez-Zacarias, C. P. Ferreira, and J. X. Velasco-Hernandez, 2004. Detachment and diffusive-convective transport in an evolving heterogeneous two-dimensional biofilm hybrid model. Physical Review E, vol. 70, no. 6, pp. 061909.
41. Matter III, P., F. D. Davidson, and R. W. G. Wyckoff, 1969. The composition of fossil oyster shell proteins. Biochemistry: Matter et al., vol. 64, pp. 970-972.
42. McCarthy, J. F. and L. D. McKay, 2004. Colloid transport in subsurface: past, present, and future challenges. Vadose Zone Journal, vol. 3, pp. 326-337.
43. Mishra, P. N. and P. M. Sutton, 1991. Biological fluidized beds for water and wastewater treatment: a state of the art review. In: H. W. Rossmoore (Ed.), Biodeterioration and Biodegradation. New York: Elsevier.
44. Namasivayam, C., A. Sakoda, and M. Suzuki, 2005. Removal of phosphate by adsorption onto oyster shell powder—kinetic studies. Journal of Chemical Technology and Biotechnoly, vol. 80, pp. 356-358.
45. Nicolella, C., M. C. M. van Loosdrecht, and J. J. Heijnen, 2000. Wastewater treatment with particulate biofilm reactors. Journal of Biotechnology, vol. 80, pp. 1-33.
46. Norrman, G., W. G. Characklis, and J. D. Bryers, 1977. Control of microbial fouling in circular tubes with chlorine. Developments in Industrial Microbiology, vol. 18, pp. 581-590.
47. Odum, H. T. and B. Odum, 2003. Concepts and methods of ecological engineering. Ecological Engineering, vol. 20, pp. 339-361.
48. Oosthuizen, M. C., B. Steyn, J. Theron, P. Cosette, D. Lindsay, A. von Holy, and V. S. Bro‥zel, 2002. Proteomic analysis reveals differential protein expression by Bacillus cereus during bioflm formation. Applied and Environmental Microbiology, vol. 68, pp. 2770–2780.
49. Park, W. H., 2009. Integrated constructed wetland systems employing alum sludge and oyster shells as filter media for P removal. Ecological Engineering, vol. 35, pp. 1275-1282.
50. Park, W. H. and C. Polprasert, 2008. Roles of oyster shells in an integrated constructed wetland system designed for P removal. Ecological Engineering, vol. 34, pp. 50-56.
51. Peng, J. S., W. C. Tsai, and C. C. Chou, 2001. Surface characteristics of Bacillus cereus and its adhesion to stainless steel. International Journal of Food Microbiology, vol. 65, pp. 105–111.
52. Peng, J. S., W. C. Tsai, and C. C. Chou, 2002. Inactivation and removal of Bacillus cereus by sanitizer and detergent. International Journal of Food Microbiology, vol. 77, pp. 11–18.
53. Peyton, B. M., 1996. Effects of shear stress and substrate loading rate on pseudomonas aeruginosa biofilm thickness and density. Water Research, vol. 30, no. 1, pp. 29-36.
54. Peyton, B. M., and W. G. Characklis, 1992. A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment. Biotechnology and Bioengineering, vol. 41, pp. 728-735.
55. Pham, H., N. Boon, P. Aelterman, P. Clauwaert, L. de Schamphelaire, L. Vanhaecke, K. de Maeyer, M. Hofte, W. Verstraete, and K. Rabaey, 2008. Metabolites produced by Pseudomonas sp. enable a gram-positive bacterium to achieve extracellular electron transfer. Applied Microbiol Biotechnology, vol. 77, pp. 1119-1129.
56. Rittmann, B. E., 1982. The effect of shear stress on biofilm loss rate. Biotechnology and Bioengineering, vol. 24, pp. 501-506.
57. Rittmann, B. E., 1989. Detachment from biofilms. In: W. G. Characklis, P. A. Wilderer (Eds.), Structure and function of biofilms. New York: Wiley.
58. Rittmann, B. E., 1990. Analyzing biofilm process used in biological filtration. Journal of American Water Works Association, vol. 82, no. 12, pp. 62-66.
59. Schultz, M. P. and G. W. Swain, 1999. The effect of biofilms on turbulent boundary layers. Journal of Fluids Engineering, vol. 121, no. 1, pp. 44-51.
60. Seo, D. C., J. S. Cho, H. J. Lee, and J. S. Heo, 2005. Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Research, vol. 39, no. 11, pp. 2445-2447.
61. Siebel, M. A., 1987. Binary population biofilms. Unpublished doctoral dissertation, Montana State University, Bozeman, Montana.
62. Speitel, G. E. and F. A. DiGiano, 1987. Biofilm shearing under dynamic conditions. Journal of Environmental Engineering, vol. 113, pp. 464-475.
63. Subasinghe, R., 2006. State of World Aquaculture 2006. FAO Fisheries Technical Paper, no. 500.
64. Trulear, M. G., 1980. Dynamics of biofilm processes in an annular reactor. Unpublished master's thesis, Rice University. Houston. Texas.
65. Trulear, M. G., 1983. Cellular reproduction and extracellular polymer formation in the development of hiofilms. Unpublished doctoral dissertation, Montana State University, Bozeman, Montana.
66. Trulear, M. G. and W. G. Characklis, 1982. Dynamics of biofilm processes. Journal of Water Pollution Control Federation, vol. 54, no. 9, pp. 1288-1301.
67. Vohla, C., M. Koiv, H. J. Bavor, F. Chazarenc, and U. Mander, 2011. Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecological Engineering, vol. 37, pp. 70-89.
68. Wanner, O. and W. Gujer, 1986. A multispecies biofilm model. Biotechnology and Bioengineering, vol. 28, pp. 314-328.
69. Yao, K. M., M. T. Habibian, and C. R. O’Melia, 1971. Water and wastewater filtration: concepts and applications. Environmental Science Technology, vol. 5, no. 11, pp. 1105-1112.
70. Yawata, Y., K. Toda, E. Setoyama, J. Fukuda, H. Suzuki, H. Uchiyama, and N. Nomura, 2010. Monitoring biofilm development in a microfluidic device using modified confocal reflection microscopy. Journal of Bioscience and Bioengineering, vol. 110, issue 3, pp. 377-380.
71. Yoon, G. L., B. T. Kim, and S. H. Han, 2003. Chemical-mechanical characteristics of crushed oyster-shell. Waste Management, vol. 23, pp. 825-834.
72. Zelver, N., 1979. Biofilm development and associated energy losses in water conduits. Unpublished master's thesis, Rice University, Houston, Texas.
73. Zhang, T. C. and P. L. Bishop, 1994. Density, porosity, and pore structure of biofilms. Water Research, vol. 28, no. 11, pp. 2267-2277.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34852-
dc.description.abstract礫間接觸是一種利用微生物代謝作用以進行現地的污水處理方法,具有低成本並高效率的優點。藉由提供微生物附著表面,使附著之微生物於介質表面進行污染物吸收與生物降解作用。前人研究指出,牡蠣殼可應用於礫間接觸處理基質,且具有高處理效率;而另一面,牡蠣殼也是沿海養殖漁業的廢棄物,因此不論就環境或經濟考量,皆有利用其材料的價值。本研究嘗試以牡蠣殼為介質,探討其上之生物膜生成與生長環境之流體動力條件之關係,以供進一步應用於牡蠣殼礫間接觸場的操作。
本研究的第一部份旨在探討牡蠣殼上生物膜在不同流體動力條件底下的生成特徵,包括初始附著階段、發展階段、生物膜剝離、生物膜崩落、和再生階段。因此我們進行了為期約三個月的長時間實驗,設定流速範圍為0 到0.13m/ s之間,並以平均生長厚度作為生物膜生長的指標進行分析。結果發現,合理的增加流速有助於生物膜臨界平均厚度的增加,但也因此導致了剝離機率的增加而需較長的發展期。在本研究中,牡蠣殼生物膜的最大臨界平均厚度約900μm,並且至少皆會維持89 到140μm的基礎平均厚度。至於崩落時間也隨流速條件有明顯差異。在無流速環境下,牡蠣殼生物膜在第23 天發生崩落,而在低流速條件下則是分別在第52 和55 天發生。
本研究的第二部份主要專注於牡蠣殼生物膜的剝離現象。我們利用所推導的一個較為簡單的模式分析牡蠣殼生物膜的面積剝離率,以及雷諾數對其的影響力。同時,我們也提出了一種光學方法作為測量生物膜平均密度的非破壞性方法,且利用其於連續培養的生物反應器的測量。
總結來說,我們發現在低流速條件下,環境流速對牡蠣殼生物膜的剝落(erosion)影響為正相關,對生物膜崩落(sloughing)成負相關,其中該生物膜主要由格蘭氏陽性菌所組成,包括芽孢桿菌屬(Bacillus sp.)、短芽孢桿菌屬(Brevibacillus sp.)、和微小桿菌屬(Exiguobacterium sp.)。研究並求得一些低流速環境下牡蠣殼生物膜的生成參數作為未來現地處理的設計與操作參考參數。
zh_TW
dc.description.abstractatment efficiency, in order to understand the relationships between fluid velocities and biofilm formation and detachment, and applicate them into the operation of oyster shells’ contacted beds.
In the first part of this study, we observed biofilm formation in a long period (about 3 months), in order to discuss biofilm formation processes including initial cultivation, development, detachment, collapse, and re-growth durning different fluid dynamics. We set fluid velocities from 0 to 0.13 m/ s , and took biofilm mean thickness as the growth index in results analysis. Mainly, we found out that a reasonable increasing of fluid velocity is benefit to critical mean biofilm thickness but also lead to a longer development period because of higher detachment frequency. The maximum critical mean thickness of oyster shells’ biofilm is about 900 μm in our results, and there will remain a basic mean thickness from 89 to 140 μm . The sloughing time is also significantly different in free velocity environment and velocity environment. In a free velocity environment, oyster shells’ biofilm occurred sloughing at day 23, on the other hand, it occurred at day 52 and 55 in slow velocities environment. In the second part of this study we focused on the detachment process of oyster shells’ biofilm. We derived a relatively simple model to analyse the areal detachment rate of oyster shells’ biofilm and discussed the influence of Reynolds number on it. Moreover, we also proposed an optical method to measure biofilm mean density in a non-destructed way and utilized it in the measurement of a continuously cultivated biofilm reactor.
Conclusively, we found that fluid velocities are possitive correlation to erosion but negative corelation to sloughing in low velocity flow ( < 0.13 m/ s ), and obtained some reference parameters of oyster shells’ biofilm which is mainly composed of gram-positive bacteria including Bacillus sp., Brevibacillus sp., and Exiguobacterium sp. in the flow condition in order to be a reference of in-situ operation and future design.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:35:37Z (GMT). No. of bitstreams: 1
ntu-100-R98622016-1.pdf: 982184 bytes, checksum: 1172dafc4d0fdfe7d9e95e96070af7cf (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAbstract ……………………………………………………………………………………………iv
摘要 …………………………………………………………………………………………………vi
Contents …………………………………………………………………………………………viii
List of Figures ……………………………………………………………………………………x
List of Tables ……………………………………………………………………………………xi
Chapter 1 Introduction …………………………………………………………………………1
1.1 Motivation ……………………………………………………………………………………1
1.2 Literature Review ……………………………………………………………………………3
1.2.1 The Applications of Oyster Shells as Ecological Engineering Materials ……3
1.2.2 Biofilm and Wastewater Treatment………………………………………………………5
1.2.3 Biofilm Formation and Physical Factors………………………………………………6
1.2.4 Detachment of Biofilm ……………………………………………………………………7
1.2.5 Methods of Biofilm Quantification ……………………………………………………9
1.3 Objective………………………………………………………………………………………12
Chapter 2 Theory …………………………………………………………………………………13
2.1 Continuity Equation…………………………………………………………………………13
2.2 Bernoulli’s Equation………………………………………………………………………16
2.3 Reynolds Number………………………………………………………………………………18
2.4 Biofilm Mass Balance Equation……………………………………………………………20
2.5 Biofilm Mass Detachment Rate ……………………………………………………………22
2.6 Biofilm Detachment Model …………………………………………………………………24
2.7 Simple Moving Average………………………………………………………………………26
Chapter 3 Materials and Methods………………………………………………………………27
3.1 Background Water Quality …………………………………………………………………27
3.2 Field Experiment: Take Biofilm Thickness as Growth Index ………………………28
3.2.1 Biofilm Reactor……………………………………………………………………………28
3.2.2 Experiment Design…………………………………………………………………………30
3.3 Laboratory Experiment: Parameters of Biofilm Detachment…………………………33
3.3.1 Biofilm Reactor……………………………………………………………………………33
3.3.2 Experiment Design…………………………………………………………………………37
3.4 Morphology Analysis…………………………………………………………………………39
3.4.1 Area …………………………………………………………………………………………39
3.4.2 Density………………………………………………………………………………………39
3.4.3 Thickness……………………………………………………………………………………41
3.4.4 Detachment Rate……………………………………………………………………………41
3.5 Bacterial Identification …………………………………………………………………42
Chapter 4 Result and Discussion………………………………………………………………43
4.1 Take Biofilm Thickness as Growth Index ………………………………………………43
4.1.1 Critical Mean Thickness…………………………………………………………………43
4.1.2 Sloughing Cycle……………………………………………………………………………45
4.1.3 Biofilm Basic Thickness…………………………………………………………………47
4.1.4 The Primary Stage of Biofilm Formation ……………………………………………49
4.2 Parameters of Biofilm Detachment ………………………………………………………52
4.2.1 Incident Light Absorption Intensity and Mean Density Regression Equation 52
4.2.2 Detachment Rate Coefficient……………………………………………………………55
4.2.3 Detachment Rate and Reynolds Number…………………………………………………56
4.3 Water Analysis and Bacterial Identification…………………………………………59
Chapter 5 Conclusion and Perspective ………………………………………………………62
Chapter 6 Reference………………………………………………………………………………64
Appendix A: List of Symbols……………………………………………………………………70
Appendix B: Raw Data of Field Experiment …………………………………………………72
Appendix C: Raw Data of Detachment Rate……………………………………………………73
dc.language.isoen
dc.subjectlow velocityen
dc.subjectBiofilm formationen
dc.subjectOyster shellen
dc.subjectContacted beden
dc.subjectBiofilm detachmenten
dc.subjectOptical methoden
dc.title低流速條件下牡蠣殼生物膜的生成與剝離研究zh_TW
dc.titleAnalysis of Biofilm Formation and Detachment on Oyster Shells in Low Velocity Flowen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張倉榮,張尊國,黃慶璨,游進裕
dc.subject.keyword牡蠣殼,礫間接觸,生物膜生成,生物膜剝離,光學方法,低流速,zh_TW
dc.subject.keywordOyster shell,Contacted bed,Biofilm formation,Biofilm detachment,Optical method,low velocity,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2011-07-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
959.16 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved