請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34851完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林達德(Ta-Te Lin) | |
| dc.contributor.author | Chia-Hung Hsu | en |
| dc.contributor.author | 徐嘉鴻 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:35:36Z | - |
| dc.date.available | 2011-08-23 | |
| dc.date.copyright | 2011-08-23 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-21 | |
| dc.identifier.citation | 參考文獻
[1] 林建忠。1999。雷射測距技術與研究現況。光連雙月刊,第19期。台北市:財團法人光電科技工業協進會。 [2] 洪國隆。2007。使用立體視覺建立網路虛擬實境之地理資訊系統。碩士論文。臺北:國立台灣大學生物產業機電工程學系。 [3] 熊元愷。2005。應用電腦立體視覺建立虛擬實境地理資訊系統。碩士論文。臺北:國立台灣大學生物產業機電工程學系。 [4] 張洪國。2004。整合網路技術與虛擬實境之地理資訊系統。碩士論文。臺北:國立台灣大學生物產業機電工程學系。 [5] Agarwal, S., N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski. 2009. Building Rome in a Day. IEEE International Conference on Computer Vision: 72-79. [6] Amenta N., M. Bern, and M. Kamvysselis. 1998. A new Voronoi-based surface reconstruction algorithm. In Proceedings of ACM SIGGRAPH. 415-421. [7] Amenta N., S. Choi, and R. Kolluri. 2001. The power crust. In Proceedings of 6th ACM Symposium on Solid Modeling. 249-260. [8] Arun, K.S., T. S. Huang, and S.D. Blostein. 1987. Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence. 698-670. [9] Bajaj, C. L., F. Bernarjini, and G. Xu. 1995. Automatic reconstruction of surfaces and scalar fields from 3D scans. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. 109-118. [10] Barnard, S. T., and M. A. Fischler. 1982. Computational stereo. ACM Computing Surveys (CSUR). 553-572. [11] Bellman, J. and M.R. Shortis. 2002. A machine learning approach to building recognition in aerial photographs. Proc. Photogrammetric Computer Vision, part A, International Soc. Photogrammetry and Remote Sensing: 50-55. [12] Bertalmio, M., G. Sapiro, V. Caselles, and C. Ballester. 2000. Image Inpainting. Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. 417-424. [13] Blais, F. 2004. Review of 20 years of range sensor development. Journal of electronic imaging. 13: 231. [14] Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 8(6): 679-698 [15] Chen, C., Y. Hung, and J. Cheng. 1998. A Fast Automatic Method for Registration of Partially-Overlapping Range Images. Proc. ICCV. 242-248. [16] Chen, S.E. 1995. QuickTime VR: an image-based approach to virtual environment navigation. In Proceedings of ACM SIGGRAPH. 29-38. [17] Chu, L. C. 2009. Integration of Panorama Image and Laser Scanning to Build Large-Scale Virtual Reality Models. Master thesis. Taipei: Department of Bio-Industrial Mechatronics Engineering, College of Bioresources and Agriculture National Taiwan University. [18] Cobb, D. A., and A. Olivero. 1997. Online GIS service. Journal of Academic Librarianship. 23(6): 484-497. [19] Cox, A. B., and G. Fred. 1997. An overview to geographic information system. Journal of Academic Librarianship. 23(6): 449-461. [20] Debevec, P., C. Taylor, and J. Malik. 1996. Modeling and rendering architecture from photographs: a hybrid geometry-and image-based approach. In Proceedings of ACM SIGGRAPH. 11-20 [21] Delaney, B. 2000. Visualization in urban planning: they didn't build LA in a day. IEEE Computer Graphics and Applications. 20(3): 10-16. [22] Dhond, U. R., and J. K. Aggarwal. 1989. Structure from stereo - a review. IEEE Transactions on Systems, Man and Cybernetics. 19: 1489-1510. [23] Durlach, N. I., and A. S. Mavor, eds. 1995. Virtual Reality—Scientific and Technological Challenges. Washington, D.C.: National Research Council. [24] Faust, N. L. 1995. The virtual reality of GIS. Environment and Planning B: Planning and Design. 22: 257-268 [25] Fischler, M. A. and R. C. Bolles. 1981. Ramdon sample consensus: A paradiam for model fitting with applications to image analysis and automated cartography. Communication of the ACM 24(6): 381-395. [26] Forstner W. 1999. 3D-city models: automatic and semiautomatic acquisition methods. Inst. for Photogrammetry, University of Stuttgart. Photogrammetric Week: 291-303. [27] Frueh, C., and A. Zakhor. 2001. 3D model generation for cities using aerial photographs and ground level laser scans. IEEE conf. on Computer Vision and Pattern Recognition. 2(2): 31-38. [28] Fruh, C., and A. Zakhor. 2004. An automated method for large-scale, ground-based city model acquisition. International Journal of Computer Vision. 60(1): 5–24. [29] Gelfand, N., N. J. Mitra, L. J. Guibas, and H. Pottmann. 2005. Robust global registration. In Symposium on Geometry Processing. 2(3): 5-8. [30] Guo, Y., H. S. Sawhney, R. Kumar, S. Hsu. 2001 Learning-based building outline detection from multiple aerial images. IEEE Computer Vision and Pattern Recognition. 2(2): 545-552. [31] Hu, J., S. You, and U. Neumann. 2003. Approaches to large-scale urban modeling. IEEE Computer Graphics and Applications. 23(6): 62-69. [32] Jalba, A. C., and Jos B. T. M. Roerdink. 2009. Efficient surface reconstruction from noisy data using regularized membrane potentials. IEEE Transactions on Image Processing. 18(5): 1119-1134. [33] Kazhdan, M., M. Bolitho, and H. Hoppe. 2006. Poisson Surface Reconstruction. ACM International Conference Proceeding Series. 256: 61-70. [34] Koller, D., P. Lindstrom, W. Ribarsky, L. F. Hodges, N. Faust, and G. Turner. 1995. Virtual GIS: A Real-Time 3D Geographic Informational System. Proceedings of the 6th conference on Visualization: 94. IEEE Computer Society, Washington, DC. [35] Lin, C. and R. Nevatia. 1998 Building detection and description from a single intensity image. Proc. Computer Vision and Image Understanding. 72(2): 101-121. [36] Liu, L., and I. Stamos. 2005. Automatic 3D to 2D registration for the photorealistic rendering of urban scenes. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2: 137-143. [37] Lourakis M. I. A. and A. A. Argyros. 2004. The design and implementation of a generic sparse bundle adjustment software package based on the levenberg-marquardt algorithm. The Transactions on Mathematical Software ICS/FORTH Technical Report. [38] Lourakis, M. I. A., and A. A. Argyros. 2009. SBA: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software. 36(1): Article 2. [39] Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision. 60(2): 90-110. [40] McMillan, L. and G. Bishop. 1995. Plenoptic modeling: an image-based rendering system. In Proceedings of ACM SIGGRAPH. 39-46. [41] Ohtake, Y., A. G. Belyaev, and H.-P. Seidel. 2005. An integrating approach to meshing scattered point data. In ACM Symposium on Solid and Physical Modeling. 61-69. [42] Pollefeys, M., L. V. Gool, M. Vergauwen, K. Cornelis, F. Verbiest, and J. Tops. 2003. 3D recording for archaeological fieldwork. IEEE Computer Graphics and Applications. 23(3): 20-27. [43] Pollefeys , M., D. Nister, J. M. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp, C. Engels, D. Gallup, S. J. Kim, P. Merrell, C. Salmi, S. Sinha, B. Talton, L. Wang, Q. Yang, H. Stewenius, R. Yang, G.Welch, and H. Towles. 2008. Detailed real-time urban 3D reconstruction from video. International Journal of Computer Vision. 78: 143–167. [44] Poullis, C. and S. You. 2011. 3D reconstruction of urban areas. International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT). 33-40. [45] Ribarsky, W., T. Wasilewski, and N. Faust. 2002. From urban terrain models to visible cities. IEEE Computer Graphics and Applications. 22(4): 10-15. [46] Scharstein, D., and R. Szeliski. 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision. 47: 7-42. [47] Sequeira, V., K. Ng., E. Wolfart, J. G.. M. Gonalves, and D. Hogg. 1999. Automated reconstruction of 3D models from real environments. 54:1-22. [48] Shewchuk, J. R. 2003. Updating and constructing constrained Delaunay and constrained regular triangulations by flips. Proceedings of the 19th Annual Symposium on Computational Geometry. 181-190. [49] Shum, H.Y. and R. Szeliski. 1999. Stereo reconstruction from multiperspective panoramas. International Conference on Computer Vision. 1:14-21. [50] Snavely, N., S. M. Seitz, and R. Szeliski. 2006. Photo tourism: exploring photo collections in 3D. ACM Transactions on Graphics. 25(3): 835-846. [51] Snavely, N., S. M. Seitz, and R. Szeliski. 2008. Skeletal graphs for efficient structure from motion. Computer Vision and Pattern Recognition: 1-8 [52] Sutherland, I. E. 1965. The Ultimate Display. Proceedings of IFIP Congress: 506-508. [53] Thrun, S., W. Burgard and D. Fox 2005. Probabilistic Robotics 2rd ed., Massachusetts: The MIT Press. [54] USGS. 2007. Geographic Information Systems. U.S. Department of the Interior. Available at: http://egsc.usgs.gov/isb/pubs/gis_poster/. Accessed 22 Feb 2007. [55] You, S., J. Hu, U. Neumann, and P. Fox 2003. Urban Site Modeling from Lidar. International Workshop of Computer Graphics and Geometric Modeling. 579 -588. [56] Zaharescu, A., E. Boyer, and R. Horaud. 2011. Topology-adaptive mesh deformation for surface evolution, morphing, and multiview reconstruction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(4): 823-837 [57] Zhang, Z. 2000. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1330-1334. [58] Zhao, H. and S. Ryosuke. 2001. Reconstructing textured CAD model of urban environment using vehicle-borne laser range scanners and line cameras. International Workshop of Computer Vision Systems. 284-297. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34851 | - |
| dc.description.abstract | 虛擬實境應用於醫學、軍事、工業上等等的教育訓練,幫助操作者進行沒有時地限制的反覆練習,以便能完成在真實世界中困難或失敗代價高昂的工作。虛擬環境的建造是虛擬實境領域中最常有的應用之一,然而欲建構戶外場景的大型虛擬實境場景,除了以人工繪製以外,商用的套裝系統皆索價高昂。本研究提出了一個新的流程用以建構大尺度虛擬實境,主要的貢獻是以低成本、快速、的逆向工程來完成建構大尺度虛擬實境,結合環場影像以及雷射掃描空間資訊建構大尺度虛擬實境模型。可針對校園環境格局做實景建模,並以真實影像做為貼圖材質。建立模型的五步驟分別為:點雲及影像資訊擷取、單一場景建構、場景連結、修補、貼圖。首先,以雷射測距儀與數位單眼相機同時取得環場空間資訊以及紋理影像,配合取景限制簡化建構模型的程序。在連結場景的過程中,過去全域比對法僅能得到唯一解,易受到沒有良好初始值以及場景不均勻的複雜點雲資訊之影像,本研究提出創新的方法以鳥瞰方向的Z-buffer結構推估空間資訊車在場景與場景之間的移動關係,以獲得資訊車位置之機率分布,並且以空攝影像做為場景接合的全域限制以及修正基礎,在本研究中場景與場景之平均距離為24.2公尺,接合成功率提高至85%。本研究提出創新的貼圖方法,能克服傳統三維模型貼圖需人工給定材質與位置的問題,以取景位置對場景模型做分割,由取景中心投影全景影像至場景模型。 | zh_TW |
| dc.description.abstract | Virtual reality has been applied in many fields to assist people in dealing with hard problems in the real-world. Virtual environment construction is the most common application in virtual reality fields. However, large-scale environments such as campus environments containing many buildings are usually reconstructed by manual operation or through very expensive instruments. Therefore, we developed a novel system for building large-scale virtual reality models with photorealistic appearance. There are five steps of model reconstruction: data collection, single scene reconstruction, scenes registration, scenes repair, and texture mapping. First of all, a laser range finder and two digital single lens reflex cameras are integrated to get space information and object texture images simultaneously. Besides, the environment model is reconstructed under restricting the data collection procedure to promote the operation efficiency. To solve problems in scenes registration, a novel method for combining scenes in complex environments is proposed. The z-buffer structure from bird’s eye view is applied to estimate the moving path of the space shuttle car in an environment. The probability distribution of the position where we collect information from is consequently obtained. Aerial images are further used as global restriction and the base of modification. The success rate of scenes registration is 85%. A novel method for texture mapping is also established to overcome the problems of time-consuming and laborious while projecting panorama images to a model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:35:36Z (GMT). No. of bitstreams: 1 ntu-100-R98631017-1.pdf: 7502031 bytes, checksum: c424fc70c4bac70e137fddaa2ab981e8 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌 謝 i
摘 要 ii Abstract iii 目 錄 iv 圖目錄 x 表目錄 xiii 第一章 前言與研究目的 1 1.1前言 1 1.2研究目的 2 第二章 文獻探討 4 2.1虛擬實境 (virtual reality) 4 2.1.1大尺度虛擬實境(Large-Scale Virtual Reality)之沿革 5 2.1.2大尺度虛擬實境之實現 6 2.1.2.1 攝影量測系統 6 2.1.2.2主動式感測器系統 8 2.1.2.3混合式感測系統 9 2.2地理資訊系統 (geographic information system) 9 2.2.1地理資訊系統的資訊格式 10 2.2.2地理資訊系統的功能 11 2.2.3網路地理資訊系統 11 2.2.4地理資訊系統與虛擬實境 12 2.3三維空間重建原理 12 2.3.1立體視覺(stereo vision) 12 2.3.2雷射測距 15 2.3.3表面重建 (surface reconstruction) 17 2.3.4即時定位與地圖繪製 (Simultaneous Localization and Mapping, SLAM) 技術 19 2.3.4.1最近點疊代法 (iterative closet point, ICP) 19 2.3.4.2貝氏濾波器 20 2.3.4.3 SLAM演算法 21 2.4三維空間重建綜合方法與應用 22 2.4.1測距資訊與影像 22 2.4.2綜合應用方法 23 第三章 材料與方法 24 3.1系統架構 24 3.1.1硬體架構 24 3.1.2軟體架構 26 3.1.3 空間與影像資料蒐集系統 27 3.2 單一場景建構 29 3.2.1雷射資訊處理 30 3.2.1.1空間資料點排序 30 3.2.1.2中值濾波 31 3.2.1.3平面修補 32 3.2.1.4 座標轉換 33 3.2.2影像資訊處理 33 3.2.2.1 全景接合 34 3.2.2.2 輪廓對應 35 3.2.3色彩對應 38 3.3多場景連結 39 3.3.1 z-buffer地面投影全域對應法 41 3.3.2空攝圖輪廓對應法 42 3.3.2.1 預測模型 42 3.3.2.2 感測模型 44 3.3.2.3蒙地卡羅定位法 45 3.3.3人工連結 47 3.3.4多場景點雲聯合輸出 47 3.4模型修補 47 3.4.1表面重建 48 3.4.2人工修復 48 3.5虛擬實境展示系統 49 3.5.1模型貼圖 49 3.5.2虛擬實境 50 第四章 結果與討論 51 4.1硬體架構改良 51 4.2單一場景建構 52 4.2.1擷取原始資料 52 4.2.2雷射資訊處理 52 4.2.2.1距離資訊排序 52 4.2.2.2中值濾波 53 4.2.2.3平面修補 54 4.2.2.4座標轉換 55 4.2.3 影像資訊處理 56 4.3場景連結 58 4.3.1場景連結之有無空攝影像修正比較 59 4.3.2空攝圖輪廓對應法參數設定比較 65 4.3.3空攝圖輪廓對應法與全域對應法比較 67 4.4場景重建與修補 68 4.4.1平面重建參數設定比較 68 4.4.2場景修補之執行與參數比較 72 4.5虛擬實境展示 74 4.5.1模型貼圖 74 4.5.2虛擬實境效果比較 75 4.6實驗組展示 79 4.6.1臺灣大學校門口 79 4.6.2舟山路前段 83 4.6.3舟山路中段 88 4.6.4椰林大道與舟山路連接段 93 4.6.5 知武館401會議室 97 4.6.6高坂知武教授紀念室 98 第五章 結論與建議 101 5.1 結論 101 5.2 建議 102 參考文獻 103 | |
| dc.language.iso | zh-TW | |
| dc.subject | 空攝圖 | zh_TW |
| dc.subject | 紋理映射 | zh_TW |
| dc.subject | 虛擬實境 | zh_TW |
| dc.subject | 環場影像 | zh_TW |
| dc.subject | Aerial Image | en |
| dc.subject | Virtual Reality | en |
| dc.subject | Registration | en |
| dc.subject | Texture Mapping | en |
| dc.title | 大尺度虛擬實境場景接合與修補演算法之研究 | zh_TW |
| dc.title | A Study on Scene Registration and Patching
Algorithms for Large-Scale Virtual Reality | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 艾群(Chyung Ay),江昭皚(Joe-Air Jiang) | |
| dc.subject.keyword | 虛擬實境,環場影像,空攝圖,紋理映射, | zh_TW |
| dc.subject.keyword | Virtual Reality,Registration,Aerial Image,Texture Mapping, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-21 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 7.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
