Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34829
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂紹俊(Shao-Chun Lu)
dc.contributor.authorYuan-Yi Chouen
dc.contributor.author周苑怡zh_TW
dc.date.accessioned2021-06-13T06:35:15Z-
dc.date.available2016-10-05
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-07-25
dc.identifier.citationAkira, S., Isshiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., Nakajima, T., Hirano, T., and Kishimoto, T. (1990). A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J 9, 1897-1906.
Arbibe, L., Mira, J.P., Teusch, N., Kline, L., Guha, M., Mackman, N., Godowski, P.J., Ulevitch, R.J., and Knaus, U.G. (2000). Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 1, 533-540.
Attur, M.G., Patel, R., Thakker, G., Vyas, P., Levartovsky, D., Patel, P., Naqvi, S., Raza, R., Patel, K., Abramson, D., et al. (2000). Differential anti-inflammatory effects of immunosuppressive drugs: cyclosporin, rapamycin and FK-506 on inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and PGE2 production. Inflamm Res 49, 20-26.
Baeuerle, P.A., and Henkel, T. (1994). Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12, 141-179.
Bendall, H.H., Scherer, D.C., Edson, C.R., Ballard, D.W., and Oltz, E.M. (1997). Transcription factor NF-kappaB regulates inducible Oct-2 gene expression in precursor B lymphocytes. J Biol Chem 272, 28826-28828.
Beutler, B., and Rietschel, E.T. (2003). Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3, 169-176.
Bjornsti, M.A., and Houghton, P.J. (2004). The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4, 335-348.
Bogdan, C. (2001). Nitric oxide and the immune response. Nat Immunol 2, 907-916.
Bone, R.C. (1993). How gram-positive organisms cause sepsis. J Crit Care 8, 51-59.
Bone, R.C. (1994). Gram-positive organisms and sepsis. Arch Intern Med 154, 26-34.
Boneberg, E.M., and Hartung, T. (2002). Molecular aspects of anti-inflammatory action of G-CSF. Inflamm Res 51, 119-128.
Brown, C.Y., Lagnado, C.A., and Goodall, G.J. (1996). A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A+U-rich elements. Proc Natl Acad Sci U S A 93, 13721-13725.
Brunn, G.J., Hudson, C.C., Sekulic, A., Williams, J.M., Hosoi, H., Houghton, P.J., Lawrence, J.C., Jr., and Abraham, R.T. (1997). Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99-101.
Brunn, G.J., Williams, J., Sabers, C., Wiederrecht, G., Lawrence, J.C., Jr., and Abraham, R.T. (1996). Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15, 5256-5267.
Cao, W., Manicassamy, S., Tang, H., Kasturi, S.P., Pirani, A., Murthy, N., and Pulendran, B. (2008). Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol 9, 1157-1164.
Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156-159.
Chou, S.F., Chen, H.L., and Lu, S.C. (2002). Up-regulation of human deoxyribonuclease II gene expression during myelomonocytic differentiation of HL-60 and THP-1 cells. Biochem Biophys Res Commun 296, 48-53.
Chou, Y.Y., Gao, J.I., Chang, S.F., Chang, P.Y., and Lu, S.C. (2011). Rapamycin inhibits lipopolysaccharide induction of granulocyte-colony stimulating factor and inducible nitric oxide synthase expression in macrophages by reducing the levels of octamer-binding factor-2. FEBS J 278, 85-96.
Cohen, J. (2002). The immunopathogenesis of sepsis. Nature 420, 885-891.
Corcoran, L.M., Karvelas, M., Nossal, G.J., Ye, Z.S., Jacks, T., and Baltimore, D. (1993). Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev 7, 570-582.
Cornish, A.L., Campbell, I.K., McKenzie, B.S., Chatfield, S., and Wicks, I.P. (2009). G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 5, 554-559.
Cox, G., Gauldie, J., and Jordana, M. (1992). Bronchial epithelial cell-derived cytokines (G-CSF and GM-CSF) promote the survival of peripheral blood neutrophils in vitro. Am J Respir Cell Mol Biol 7, 507-513.
Dahmash, N.S., Chowdhury, N.H., and Fayed, D.F. (1993). Septic shock in critically ill patients: aetiology, management and outcome. J Infect 26, 159-170.
Datta, S.R., Brunet, A., and Greenberg, M.E. (1999). Cellular survival: a play in three Akts. Genes Dev 13, 2905-2927.
Deans, Z., Dawson, S.J., Buttery, L., Polak, J.M., Wallace, D., and Latchman, D.S. (1995). Direct evidence that the POU family transcription factor Oct-2 represses the cellular tyrosine hydroxylase gene in neuronal cells. J Mol Neurosci 6, 159-167.
Deininger, S., Traub, S., Aichele, D., Rupp, T., Baris, T., Moller, H.M., Hartung, T., and von Aulock, S. (2008). Presentation of lipoteichoic acid potentiates its inflammatory activity. Immunobiology 213, 519-529.
Demetri, G.D., and Griffin, J.D. (1991). Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791-2808.
Dong, B., and Zhao, F.Q. (2007). Expression of the Oct-2 transcription factor in mouse mammary gland and cloning and characterization of a novel Oct-2 isoform. Cell Tissue Res 328, 595-606.
Draing, C., Pfitzenmaier, M., Zummo, S., Mancuso, G., Geyer, A., Hartung, T., and von Aulock, S. (2006). Comparison of lipoteichoic acid from different serotypes of Streptococcus pneumoniae. J Biol Chem 281, 33849-33859.
Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A., and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479.
Dunn, T.L., Ross, I.L., and Hume, D.A. (1996). Transcription factor Oct-2 is expressed in primary murine macrophages. Blood 88, 4072.
Ernst, T.J., Ritchie, A.R., Demetri, G.D., and Griffin, J.D. (1989). Regulation of granulocyte- and monocyte-colony stimulating factor mRNA levels in human blood monocytes is mediated primarily at a post-transcriptional level. J Biol Chem 264, 5700-5703.
Eyles, J.L., Hickey, M.J., Norman, M.U., Croker, B.A., Roberts, A.W., Drake, S.F., James, W.G., Metcalf, D., Campbell, I.K., and Wicks, I.P. (2008). A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. Blood 112, 5193-5201.
Eyles, J.L., Roberts, A.W., Metcalf, D., and Wicks, I.P. (2006). Granulocyte colony-stimulating factor and neutrophils--forgotten mediators of inflammatory disease. Nat Clin Pract Rheumatol 2, 500-510.
Falkenburg, J.H., Harrington, M.A., de Paus, R.A., Walsh, W.K., Daub, R., Landegent, J.E., and Broxmeyer, H.E. (1991). Differential transcriptional and posttranscriptional regulation of gene expression of the colony-stimulating factors by interleukin-1 and fetal bovine serum in murine fibroblasts. Blood 78, 658-665.
Fischer, W. (1988). Physiology of lipoteichoic acids in bacteria. Adv Microb Physiol 29, 233-302.
Fruman, D.A., Meyers, R.E., and Cantley, L.C. (1998). Phosphoinositide kinases. Annu Rev Biochem 67, 481-507.
Fujihara, M., Muroi, M., Tanamoto, K., Suzuki, T., Azuma, H., and Ikeda, H. (2003). Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 100, 171-194.
Gao, J.I. (2007). The role of PI3K/Akt/mTOR signaling pathway in LPS-induced increase of granulocyte-colony stimulating factor in macrophages. Master Thesis. Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University.
Garban, H.J., and Bonavida, B. (2001). Nitric oxide inhibits the transcription repressor Yin-Yang 1 binding activity at the silencer region of the Fas promoter: a pivotal role for nitric oxide in the up-regulation of Fas gene expression in human tumor cells. J Immunol 167, 75-81.
Geng, D., Zheng, L., Srivastava, R., Asprodites, N., Velasco-Gonzalez, C., and Davila, E. (2010). When toll-like receptor and T-cell receptor signals collide: a mechanism for enhanced CD8 T-cell effectors function. Blood.
Ghosh, S., and Karin, M. (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl, S81-96.
Ghosh, S., May, M.J., and Kopp, E.B. (1998). NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16, 225-260.
Gingras, A.C., Kennedy, S.G., O'Leary, M.A., Sonenberg, N., and Hay, N. (1998). 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12, 502-513.
Grimm, S., and Baeuerle, P.A. (1993). The inducible transcription factor NF-kappa B: structure-function relationship of its protein subunits. Biochem J 290 ( Pt 2), 297-308.
Guha, M., and Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cell Signal 13, 85-94.
Hara, K., Yonezawa, K., Kozlowski, M.T., Sugimoto, T., Andrabi, K., Weng, Q.P., Kasuga, M., Nishimoto, I., and Avruch, J. (1997). Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 272, 26457-26463.
Hareng, L., and Hartung, T. (2002). Induction and regulation of endogenous granulocyte colony-stimulating factor formation. Biol Chem 383, 1501-1517.
Hassa, P.O., Covic, M., Bedford, M.T., and Hottiger, M.O. (2008). Protein arginine methyltransferase 1 coactivates NF-kappaB-dependent gene expression synergistically with CARM1 and PARP1. J Mol Biol 377, 668-678.
Hay, N., and Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes Dev 18, 1926-1945.
He, X., Treacy, M.N., Simmons, D.M., Ingraham, H.A., Swanson, L.W., and Rosenfeld, M.G. (1989). Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 340, 35-41.
Herr, W., Sturm, R.A., Clerc, R.G., Corcoran, L.M., Baltimore, D., Sharp, P.A., Ingraham, H.A., Rosenfeld, M.G., Finney, M., Ruvkun, G., et al. (1988). The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes Dev 2, 1513-1516.
Hume, D.A., Ross, I.L., Himes, S.R., Sasmono, R.T., Wells, C.A., and Ravasi, T. (2002). The mononuclear phagocyte system revisited. J Leukoc Biol 72, 621-627.
Jefferies, H.B., Fumagalli, S., Dennis, P.B., Reinhard, C., Pearson, R.B., and Thomas, G. (1997). Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J 16, 3693-3704.
Jin, H.K., Ahn, S.H., Yoon, J.W., Park, J.W., Lee, E.K., Yoo, J.S., Lee, J.C., Choi, W.S., and Han, J.W. (2009). Rapamycin down-regulates inducible nitric oxide synthase by inducing proteasomal degradation. Biol Pharm Bull 32, 988-992.
Jorgensen, P.F., Wang, J.E., Almlof, M., Solberg, R., Okkenhaug, C., Scholz, T., Thiemermann, C., Foster, S.J., and Aasen, A.O. (2001). Sirolimus interferes with the innate response to bacterial products in human whole blood by attenuation of IL-10 production. Scand J Immunol 53, 184-191.
Kang, S.M., Tsang, W., Doll, S., Scherle, P., Ko, H.S., Tran, A.C., Lenardo, M.J., and Staudt, L.M. (1992). Induction of the POU domain transcription factor Oct-2 during T-cell activation by cognate antigen. Mol Cell Biol 12, 3149-3154.
Kao, S.J., Lei, H.C., Kuo, C.T., Chang, M.S., Chen, B.C., Chang, Y.C., Chiu, W.T., and Lin, C.H. (2005). Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology 115, 366-374.
Kao, Y.S., and Fong, J.C. (2008). Endothelin-1 induces glut1 transcription through enhanced interaction between Sp1 and NF-kappaB transcription factors. Cell Signal 20, 771-778.
Kemler, I., and Schaffner, W. (1990). Octamer transcription factors and the cell type-specificity of immunoglobulin gene expression. FASEB J 4, 1444-1449.
Kin, N.W., and Sanders, V.M. (2006). CD86 stimulation on a B cell activates the phosphatidylinositol 3-kinase/Akt and phospholipase C gamma 2/protein kinase C alpha beta signaling pathways. J Immunol 176, 6727-6735.
Kleinert, H., Pautz, A., Linker, K., and Schwarz, P.M. (2004). Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500, 255-266.
Kleinert, H., Schwarz, P.M., and Forstermann, U. (2003). Regulation of the expression of inducible nitric oxide synthase. Biol Chem 384, 1343-1364.
Konig, H., Pfisterer, P., Corcoran, L.M., and Wirth, T. (1995). Identification of CD36 as the first gene dependent on the B-cell differentiation factor Oct-2. Genes Dev 9, 1598-1607.
Koul, D., Yao, Y., Abbruzzese, J.L., Yung, W.K., and Reddy, S.A. (2001). Tumor suppressor MMAC/PTEN inhibits cytokine-induced NFkappaB activation without interfering with the IkappaB degradation pathway. J Biol Chem 276, 11402-11408.
Kristof, A.S., Marks-Konczalik, J., Billings, E., and Moss, J. (2003). Stimulation of signal transducer and activator of transcription-1 (STAT1)-dependent gene transcription by lipopolysaccharide and interferon-gamma is regulated by mammalian target of rapamycin. J Biol Chem 278, 33637-33644.
Kunsch, C., Lang, R.K., Rosen, C.A., and Shannon, M.F. (1994). Synergistic transcriptional activation of the IL-8 gene by NF-kappa B p65 (RelA) and NF-IL-6. J Immunol 153, 153-164.
Lawlor, K.E., Campbell, I.K., Metcalf, D., O'Donnell, K., van Nieuwenhuijze, A., Roberts, A.W., and Wicks, I.P. (2004). Critical role for granulocyte colony-stimulating factor in inflammatory arthritis. Proc Natl Acad Sci U S A 101, 11398-11403.
Lee, A., Whyte, M.K., and Haslett, C. (1993). Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol 54, 283-288.
Lee, Y.H. (2008). Roles of NF-κB and Oct-2 in LPS-induced G-CSF expression mediated through MEK/ERK pathway in RAW264.7 macrophages. Master Thesis. Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University.
Lieschke, G.J., Grail, D., Hodgson, G., Metcalf, D., Stanley, E., Cheers, C., Fowler, K.J., Basu, S., Zhan, Y.F., and Dunn, A.R. (1994). Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737-1746.
Lillycrop, K.A., Dent, C.L., Wheatley, S.C., Beech, M.N., Ninkina, N.N., Wood, J.N., and Latchman, D.S. (1991). The octamer-binding protein Oct-2 represses HSV immediate-early genes in cell lines derived from latently infectable sensory neurons. Neuron 7, 381-390.
Lillycrop, K.A., and Latchman, D.S. (1992). Alternative splicing of the Oct-2 transcription factor RNA is differentially regulated in neuronal cells and B cells and results in protein isoforms with opposite effects on the activity of octamer/TAATGARAT-containing promoters. J Biol Chem 267, 24960-24965.
Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M.N. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10, 457-468.
Lopez-Rodriguez, C., Zubiaur, M., Sancho, J., Concha, A., and Corbi, A.L. (1997). An octamer element functions as a regulatory element in the differentiation-responsive CD11c integrin gene promoter: OCT-2 inducibility during myelomonocytic differentiation. J Immunol 158, 5833-5840.
Lorne, E., Zhao, X., Zmijewski, J.W., Liu, G., Park, Y.J., Tsuruta, Y., and Abraham, E. (2009). Participation of mammalian target of rapamycin complex 1 in Toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury. Am J Respir Cell Mol Biol 41, 237-245.
Lotz, S., Aga, E., Wilde, I., van Zandbergen, G., Hartung, T., Solbach, W., and Laskay, T. (2004). Highly purified lipoteichoic acid activates neutrophil granulocytes and delays their spontaneous apoptosis via CD14 and TLR2. J Leukoc Biol 75, 467-477.
Lu, S.C., Chang, S.F., Chen, H.L., Chou, Y.Y., Lan, Y.H., Chuang, C.Y., Yu, W.H., and Chen, C.L. (2007). A novel role for Oct-2 in the lipopolysaccharide-mediated induction of resistin gene expression in RAW264.7 cells. Biochem J 402, 387-395.
Lu, S.C., Shieh, W.Y., Chen, C.Y., Hsu, S.C., and Chen, H.L. (2002). Lipopolysaccharide increases resistin gene expression in vivo and in vitro. FEBS Lett 530, 158-162.
Lu, S.C., Wu, H.W., Lin, Y.J., and Chang, S.F. (2009). The essential role of Oct-2 in LPS-induced expression of iNOS in RAW 264.7 macrophages and its regulation by trichostatin A. Am J Physiol Cell Physiol 296, C1133-1139.
MacMicking, J., Xie, Q.W., and Nathan, C. (1997). Nitric oxide and macrophage function. Annu Rev Immunol 15, 323-350.
Matsuno, F., Chowdhury, S., Gotoh, T., Iwase, K., Matsuzaki, H., Takatsuki, K., Mori, M., and Takiguchi, M. (1996). Induction of the C/EBP beta gene by dexamethasone and glucagon in primary-cultured rat hepatocytes. J Biochem 119, 524-532.
Mayo, M.W., Madrid, L.V., Westerheide, S.D., Jones, D.R., Yuan, X.J., Baldwin, A.S., Jr., and Whang, Y.E. (2002). PTEN blocks tumor necrosis factor-induced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J Biol Chem 277, 11116-11125.
Miller, C.L., Feldhaus, A.L., Rooney, J.W., Rhodes, L.D., Sibley, C.H., and Singh, H. (1991). Regulation and a possible stage-specific function of Oct-2 during pre-B-cell differentiation. Mol Cell Biol 11, 4885-4894.
Morrison, D.C., and Ryan, J.L. (1987). Endotoxins and disease mechanisms. Annu Rev Med 38, 417-432.
Neumann, M., Fries, H., Scheicher, C., Keikavoussi, P., Kolb-Maurer, A., Brocker, E., Serfling, E., and Kampgen, E. (2000). Differential expression of Rel/NF-kappaB and octamer factors is a hallmark of the generation and maturation of dendritic cells. Blood 95, 277-285.
Nishizawa, M., and Nagata, S. (1990). Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages. Mol Cell Biol 10, 2002-2011.
Nishizawa, M., Tsuchiya, M., Watanabe-Fukunaga, R., and Nagata, S. (1990). Multiple elements in the promoter of granulocyte colony-stimulating factor gene regulate its constitutive expression in human carcinoma cells. J Biol Chem 265, 5897-5902.
Noursadeghi, M., Bickerstaff, M.C., Herbert, J., Moyes, D., Cohen, J., and Pepys, M.B. (2002). Production of granulocyte colony-stimulating factor in the nonspecific acute phase response enhances host resistance to bacterial infection. J Immunol 169, 913-919.
Ohtani, M., Nagai, S., Kondo, S., Mizuno, S., Nakamura, K., Tanabe, M., Takeuchi, T., Matsuda, S., and Koyasu, S. (2008). Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 112, 635-643.
Pfisterer, P., Konig, H., Hess, J., Lipowsky, G., Haendler, B., Schleuning, W.D., and Wirth, T. (1996). CRISP-3, a protein with homology to plant defense proteins, is expressed in mouse B cells under the control of Oct2. Mol Cell Biol 16, 6160-6168.
Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085-2088.
Putland, R.A., Sassinis, T.A., Harvey, J.S., Diamond, P., Coles, L.S., Brown, C.Y., and Goodall, G.J. (2002). RNA destabilization by the granulocyte colony-stimulating factor stem-loop destabilizing element involves a single stem-loop that promotes deadenylation. Mol Cell Biol 22, 1664-1673.
Qin, H., Wilson, C.A., Lee, S.J., Zhao, X., and Benveniste, E.N. (2005). LPS induces CD40 gene expression through the activation of NF-kappaB and STAT-1alpha in macrophages and microglia. Blood 106, 3114-3122.
Qureshi, S.T., Lariviere, L., Leveque, G., Clermont, S., Moore, K.J., Gros, P., and Malo, D. (1999). Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189, 615-625.
Raetz, C.R. (1990). Biochemistry of endotoxins. Annu Rev Biochem 59, 129-170.
Ryan, A.K., and Rosenfeld, M.G. (1997). POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev 11, 1207-1225.
Salh, B., Wagey, R., Marotta, A., Tao, J.S., and Pelech, S. (1998). Activation of phosphatidylinositol 3-kinase, protein kinase B, and p70 S6 kinases in lipopolysaccharide-stimulated Raw 264.7 cells: differential effects of rapamycin, Ly294002, and wortmannin on nitric oxide production. J Immunol 161, 6947-6954.
Schmitz, F., Heit, A., Dreher, S., Eisenacher, K., Mages, J., Haas, T., Krug, A., Janssen, K.P., Kirschning, C.J., and Wagner, H. (2008). Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. Eur J Immunol 38, 2981-2992.
Schroder, N.W., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zahringer, U., Gobel, U.B., Weber, J.R., and Schumann, R.R. (2003). Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278, 15587-15594.
Shah, P.C., Bertolino, E., and Singh, H. (1997). Using altered specificity Oct-1 and Oct-2 mutants to analyze the regulation of immunoglobulin gene transcription. EMBO J 16, 7105-7117.
Siebenlist, U., Franzoso, G., and Brown, K. (1994). Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 10, 405-455.
Singh, H., Sen, R., Baltimore, D., and Sharp, P.A. (1986). A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319, 154-158.
Staudt, L.M., Singh, H., Sen, R., Wirth, T., Sharp, P.A., and Baltimore, D. (1986). A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. Nature 323, 640-643.
Steppan, C.M., Bailey, S.T., Bhat, S., Brown, E.J., Banerjee, R.R., Wright, C.M., Patel, H.R., Ahima, R.S., and Lazar, M.A. (2001). The hormone resistin links obesity to diabetes. Nature 409, 307-312.
Strassheim, D., Asehnoune, K., Park, J.S., Kim, J.Y., He, Q., Richter, D., Kuhn, K., Mitra, S., and Abraham, E. (2004). Phosphoinositide 3-kinase and Akt occupy central roles in inflammatory responses of Toll-like receptor 2-stimulated neutrophils. J Immunol 172, 5727-5733.
Strubin, M., Newell, J.W., and Matthias, P. (1995). OBF-1, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell 80, 497-506.
Su, S.C., Hua, K.F., Lee, H., Chao, L.K., Tan, S.K., Yang, S.F., and Hsu, H.Y. (2006). LTA and LPS mediated activation of protein kinases in the regulation of inflammatory cytokines expression in macrophages. Clin Chim Acta 374, 106-115.
Sweet, M.J., and Hume, D.A. (1996). Endotoxin signal transduction in macrophages. J Leukoc Biol 60, 8-26.
Tanaka, M., and Herr, W. (1990). Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell 60, 375-386.
Tsuchiya, M., Kaziro, Y., and Nagata, S. (1987). The chromosomal gene structure for murine granulocyte colony-stimulating factor. Eur J Biochem 165, 7-12.
Vanhaesebroeck, B., and Waterfield, M.D. (1999). Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res 253, 239-254.
Vermeulen, L., De Wilde, G., Notebaert, S., Vanden Berghe, W., and Haegeman, G. (2002). Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochem Pharmacol 64, 963-970.
von Aulock, S., Morath, S., Hareng, L., Knapp, S., van Kessel, K.P., van Strijp, J.A., and Hartung, T. (2003). Lipoteichoic acid from Staphylococcus aureus is a potent stimulus for neutrophil recruitment. Immunobiology 208, 413-422.
von Aulock, S., Schroder, N.W., Traub, S., Gueinzius, K., Lorenz, E., Hartung, T., Schumann, R.R., and Hermann, C. (2004). Heterozygous toll-like receptor 2 polymorphism does not affect lipoteichoic acid-induced chemokine and inflammatory responses. Infect Immun 72, 1828-1831.
Wang, J.E., Dahle, M.K., McDonald, M., Foster, S.J., Aasen, A.O., and Thiemermann, C. (2003). Peptidoglycan and lipoteichoic acid in gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergism. Shock 20, 402-414.
Weichhart, T., and Saemann, M.D. (2008). The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications. Ann Rheum Dis 67 Suppl 3, iii70-74.
Weichhart, T., and Saemann, M.D. (2009). The multiple facets of mTOR in immunity. Trends Immunol 30, 218-226.
Weinstein, S.L., Finn, A.J., Dave, S.H., Meng, F., Lowell, C.A., Sanghera, J.S., and DeFranco, A.L. (2000). Phosphatidylinositol 3-kinase and mTOR mediate lipopolysaccharide-stimulated nitric oxide production in macrophages via interferon-beta. J Leukoc Biol 67, 405-414.
Welte, K., Gabrilove, J., Bronchud, M.H., Platzer, E., and Morstyn, G. (1996). Filgrastim (r-metHuG-CSF): the first 10 years. Blood 88, 1907-1929.
Wicken, A.J., and Knox, K.W. (1975). Lipoteichoic acids: a new class of bacterial antigen. Science 187, 1161-1167.
Wirth, T., Priess, A., Annweiler, A., Zwilling, S., and Oeler, B. (1991). Multiple Oct2 isoforms are generated by alternative splicing. Nucleic Acids Res 19, 43-51.
Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell 124, 471-484.
Xie, Q. (1997). A novel lipopolysaccharide-response element contributes to induction of nitric oxide synthase. J Biol Chem 272, 14867-14872.
Zhong, H., May, M.J., Jimi, E., and Ghosh, S. (2002). The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 9, 625-636.
Zhou, B.P., Liao, Y., Xia, W., Zou, Y., Spohn, B., and Hung, M.C. (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3, 973-982.
Zschiedrich, I., Hardeland, U., Krones-Herzig, A., Berriel Diaz, M., Vegiopoulos, A., Muggenburg, J., Sombroek, D., Hofmann, T.G., Zawatzky, R., Yu, X., et al. (2008). Coactivator function of RIP140 for NFkappaB/RelA-dependent cytokine gene expression. Blood 112, 264-276.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34829-
dc.description.abstract這篇研究論文探討哺乳動物雷帕霉素靶蛋白的抑制劑雷帕霉素對巨噬細胞可誘導型一氧化氮合成酶及粒細胞集落刺激因子表現的影響,包含兩個部份。第一部份是關於雷帕霉素對於脂多糖誘導巨噬細胞表現可誘導型一氧化氮合成酶及粒細胞集落刺激因子的抑制作用及其潛在機制。這個研究是源自觀察對小鼠巨噬細胞株RAW264.7預先處理雷帕霉素或是轉染顯性無效抑制因子哺乳動物雷帕霉素靶蛋白的表現質體會抑制脂多糖透過隸屬於哺乳動物雷帕霉素靶蛋白的路徑誘導的八核苷酸結合因子-2的蛋白量增加。因為可誘導型一氧化氮合成酶及粒細胞集落刺激因子都可能是八核苷酸結合因子-2的目標基因,我們測試雷帕霉素對於它們表現的作用並發現它會減少脂多糖誘導增加可誘導型一氧化氮合成酶及粒細胞集落刺激因子的訊息核糖核酸量及蛋白量、一氧化氮的生成和粒細胞集落刺激因子啟動子的活性。使用顯性無效抑制因子哺乳動物雷帕霉素靶蛋白的表現質體阻斷哺乳動物雷帕霉素靶蛋白的訊息傳遞會導致脂多糖誘導增加可誘導型一氧化氮合成酶及粒細胞集落刺激因子的蛋白量和一氧化氮的生成被抑制,證實了哺乳動物雷帕霉素靶蛋白不可或缺的角色。八核苷酸結合因子-2參與脂多糖誘導可誘導型一氧化氮合成酶及粒細胞集落刺激因子表現更進一步由下列發現證實:使用pCG-Oct-2質體大量表現八核苷酸結合因子-2能克服雷帕霉素對於脂多糖誘導增加可誘導型一氧化氮合成酶及粒細胞集落刺激因子的訊息核糖核酸量的抑制作用。染色質免疫沉澱分析顯示脂多糖增加八核苷酸結合因子-2和可誘導型一氧化氮合成酶及粒細胞集落刺激因子的啟動子的結合而預先處理雷帕霉素會抑制這個作用。此外,對八核苷酸結合因子-2的表現進行核糖核酸干擾基因抑制會降低脂多糖處理的細胞中可誘導型一氧化氮合成酶及粒細胞集落刺激因子的表現。雷帕霉素對於脂多糖誘導增加八核苷酸結合因子-2的蛋白量、可誘導型一氧化氮合成酶及粒細胞集落刺激因子的訊息核糖核酸量的抑制效果也在人類THP-1單核球分化而成的巨噬細胞株中發現。這個研究顯示雷帕霉素在轉錄的層次上減少脂多糖處理的巨噬細胞中可誘導型一氧化氮合成酶及粒細胞集落刺激因子的表現是透過抑制八核苷酸結合因子-2的表現。第二部份是研究雷帕霉素對於脂磷壁酸誘導巨噬細胞表現粒細胞集落刺激因子的作用及其潛在機制。我們的結果顯示對小鼠巨噬細胞株RAW264.7或是骨髓細胞分化而成的巨噬細胞處理脂磷壁酸會誘導粒細胞集落刺激因子的表現,並且和處理劑量及處理時間呈現正相關性,而預先處理雷帕霉素則會抑制這個效果。分析粒細胞集落刺激因子五端序列顯示位於−283到+35包含有集落刺激因子元件及八核苷酸元件的片段對於脂磷壁酸調控啟動子最大活性是必需的。研究雷帕霉素和脂磷壁酸對於和集落刺激因子元件及八核苷酸元件結合的蛋白的蛋白量的作用時,西方點墨法及電泳遷移變動分析法顯示脂磷壁酸誘導核因子-κB p50及p65的入核作用,增加磷酸化的抑制因子-κB-α、CCAAT/增強子結合蛋白β和八核苷酸結合因子-2的蛋白量,提高核因子-κB和CCAAT/增強子結合蛋白β與去氧核醣核酸的結合,而雷帕霉素會抑制其中由脂磷壁酸誘導增加的八核苷酸結合因子-2的蛋白量,但不影響其他作用。八核苷酸結合因子-1的表現則不受雷帕霉素和脂磷壁酸的改變。接著探討八核苷酸結合因子-2在脂磷壁酸誘導粒細胞集落刺激因子表現中扮演的關鍵角色。以核糖核酸干擾對八核苷酸結合因子-2的表現進行基因抑制會降低脂磷壁酸誘導粒細胞集落刺激因子的訊息核糖核酸量。此外,使用pCG-Oct-2質體轉染大量表現八核苷酸結合因子-2能克服雷帕霉素對於脂磷壁酸誘導增加粒細胞集落刺激因子的訊息核糖核酸量及啟動子活性的抑制作用。這篇研究顯示雷帕霉素減少脂磷壁酸處理的巨噬細胞中粒細胞集落刺激因子的表現是透過抑制八核苷酸結合因子-2的表現。zh_TW
dc.description.abstractThe study consists of two parts. The first part reports an inhibitory effect of rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), on the lipopolysaccharide (LPS)-induced expression of both inducible nitric oxide synthase (iNOS) and granulocyte-colony stimulating factor (G-CSF) in macrophages and its underlying mechanism. The study arose from an observation that pre-treatment with rapamycin or transfection with dominant-negative (DN)-mTOR expression plasmid inhibited the LPS-induced increase in octamer-binding factor-2 (Oct-2) protein levels through an mTOR-dependent pathway in mouse RAW264.7 macrophages. As both iNOS and G-CSF are potential Oct-2 target genes, we tested the effect of rapamycin on their expression and found that it reduced the LPS-induced increase in iNOS and G-CSF mRNA levels, iNOS and G-CSF protein levels, NO production and G-CSF promoter activity. Blocking of mTOR-signaling using a DN-mTOR expression plasmid resulted in inhibition of the LPS-induced increase in iNOS and G-CSF protein levels and NO production, supporting the essential role of mTOR. The involvement of Oct-2 in LPS-induced iNOS and G-CSF expression was further supported by the finding that forced expression of Oct-2 using the pCG-Oct-2 plasmid overcame the inhibitory effect of rapamycin on the LPS-induced increase in iNOS and G-CSF mRNA levels. Chromatin immunoprecipitation (ChIP) assays showed that LPS enhanced the binding of Oct-2 to the iNOS and G-CSF promoters and that this effect was inhibited by pre-treatment with rapamycin. Moreover, RNA interference knockdown of Oct-2 expression reduced iNOS and G-CSF expression in LPS-treated cells. The inhibitory effect of rapamycin on the LPS-induced increase in Oct-2 protein levels and on the iNOS and G-CSF mRNA levels was also detected in human THP-1 monocyte-derived macrophages. This study demonstrates that rapamycin reduces iNOS and G-CSF expression at the transcription level in LPS-treated macrophages by inhibiting Oct-2 expression. The second part investigated the effect of rapamycin on the lipoteichoic acid (LTA)-induced expression of G-CSF in macrophages and its underlying mechanism. Our data showed that LTA treatment induced G-CSF expression in RAW264.7 and bone marrow-derived macrophages in a dose- and time-dependent manner and that this effect was inhibited by pre-treatment with rapamycin. Analysis of the G-CSF 5’ flanking sequence revealed that the −283 to +35 fragment, which contains CSF and octamer elements, was required for maximal promoter activity in response to LTA stimulation. When the effects of rapamycin and LTA on levels of proteins that bind to the CSF and octamer elements were investigated, Western blot analyses and electrophoretic mobility shift assays (EMSAs) showed that LTA induced nuclear translocation of NF-κB p50 and p65, increased protein levels of phospho-IκB-α, C/EBPβ and Oct-2, and enhanced the DNA binding of NF-κB and C/EBPβ, and that rapamycin inhibited the LTA-induced increase in Oct-2 protein levels, but not the other effects. Neither rapamycin nor LTA altered the expression of Oct-1. We then investigated the critical role of Oct-2 in LTA-induced G-CSF expression. Knockdown of Oct-2 expression by RNA interference resulted in a decrease in LTA-induced G-CSF mRNA levels. Moreover, forced expression of Oct-2 by transfection with the pCG-Oct-2 plasmid overcame the inhibitory effect of rapamycin on the LTA-induced increase in G-CSF mRNA levels and promoter activity. This study demonstrates that rapamycin reduces G-CSF expression in LTA-treated macrophages by inhibiting Oct-2 expression.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:35:15Z (GMT). No. of bitstreams: 1
ntu-100-F92442002-1.pdf: 8817951 bytes, checksum: 98c612939d29d92b8443dce4cc3d0e06 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract vi
List of Abbreviations ix
Table of Contents xiii
List of Figures xvi
List of Tables xxiii
Chapter I. Introduction 1
Chapter II. Materials and Methods 12
2.1 Materials 12
2.2 Methods 15
2.2.1 Cell culture 15
2.2.2 Plasmid construction 16
2.2.3 Transient transfection 18
2.2.4 RNA isolation and reverse transcription-polymerase chain reaction (RT-PCR) 19
2.2.5 Protein preparation and Western blot analysis 19
2.2.6 Reporter gene activity assay 21
2.2.7 Quantification of G-CSF in the culture medium 21
2.2.8 Quantification of NO production (nitrite) in the culture medium 23
2.2.9 Chromatin immunoprecipitation (ChIP) assay 24
2.2.10 Nuclear and cytoplasmic extracts preparation 25
2.2.11 Electrophoretic mobility shift assay (EMSA) 26
2.2.12 Statistical analysis 27
Chapter III. Results 28
Part I. Rapamycin inhibits LPS induction of G-CSF and iNOS expression in macrophages by reducing the levels of Oct-2. 28
3.1.1 Rapamycin inhibits the LPS-induced increase in Oct-2 protein levels in RAW264.7 macrophages. 28
3.1.2 Rapamycin decreases LPS-induced iNOS expression in RAW264.7 macrophages. 31
3.1.3 Rapamycin inhibits G-CSF expression in LPS-treated RAW264.7 macrophages. 32
3.1.4 Oct-2 is directly involved in LPS-induced iNOS and G-CSF expression in RAW264.7 macrophages. 33
3.1.5 LPS-induced expression of Oct-2, G-CSF and iNOS in the THP-1 human monocyte/macrophage cell line is sensitive to rapamycin treatment. 34
Part II. Rapamycin inhibits LTA induction of G-CSF expression in macrophages by reducing the levels of Oct-2. 35
3.2.1 LTA up-regulates G-CSF expression in a dose- and time-dependent manner in RAW264.7 macrophages. 35
3.2.2 Determination of the G-CSF 5’ flanking sequence essential for maximal activation by LTA in RAW264.7 macrophages 36
3.2.3 Rapamycin attenuates LTA-induced G-CSF expression in RAW264.7 macrophages. 37
3.2.4 Effects of rapamycin and LTA on levels of transcriptional factors involved in transcriptional regulation of G-CSF in RAW264.7 macrophages 38
3.2.5 Rapamycin inhibits the LTA-induced increase in G-CSF and Oct-2 expression in bone marrow-derived macrophages. 41
3.2.6 Critical role of Oct-2 in the LTA-induced expression of G-CSF in RAW264.7 macrophages 41
Chapter IV. Discussion 43
Part I. Rapamycin inhibits LPS induction of G-CSF and iNOS expression in macrophages by reducing the levels of Oct-2. 43
Part II. Rapamycin inhibits LTA induction of G-CSF expression in macrophages by reducing the levels of Oct-2. 49
Chapter V. Overall Conclusion and Perspective 54
Chapter VI. Figures 56
Chapter VII. Tables 126
References 128
List of Publications 146
dc.language.isoen
dc.subject雷帕霉素zh_TW
dc.subject粒細胞集落刺激因子zh_TW
dc.subject可誘導型一氧化氮合成&#37238zh_TW
dc.subject脂多糖zh_TW
dc.subject脂磷壁酸zh_TW
dc.subject巨噬細胞zh_TW
dc.subject哺乳動物雷帕霉素靶蛋白zh_TW
dc.subject八核&#33527zh_TW
dc.subject酸結合因子-2zh_TW
dc.subjectmacrophageen
dc.subjectoctamer-binding factor-2 (Oct-2)en
dc.subjectmammalian target of rapamycin (mTOR)en
dc.subjectGranulocyte-colony stimulating factor (G-CSF)en
dc.subjectinducible nitric oxide synthase (iNOS)en
dc.subjectlipopolysaccharide (LPS)en
dc.subjectlipoteichoic acid (LTA)en
dc.subjectrapamycinen
dc.title雷帕霉素透過降低八核苷酸結合因子-2的蛋白量而抑制脂多糖或脂磷壁酸誘導巨噬細胞表現粒細胞集落刺激因子及可誘導型一氧化氮合成酶zh_TW
dc.titleRapamycin inhibits LPS or LTA induction of G-CSF and iNOS expression in macrophages by reducing the levels of Oct-2en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee張淑芬(Shwu-Fen Chang),李明學(Ming-Shyue Lee),徐立中(Li-Chung Hsu),姜安娜(An-Na Chiang)
dc.subject.keyword粒細胞集落刺激因子,可誘導型一氧化氮合成&#37238,脂多糖,脂磷壁酸,巨噬細胞,哺乳動物雷帕霉素靶蛋白,八核&#33527,酸結合因子-2,雷帕霉素,zh_TW
dc.subject.keywordGranulocyte-colony stimulating factor (G-CSF),inducible nitric oxide synthase (iNOS),lipopolysaccharide (LPS),lipoteichoic acid (LTA),macrophage,mammalian target of rapamycin (mTOR),octamer-binding factor-2 (Oct-2),rapamycin,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2011-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved