Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34823
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊照彥
dc.contributor.authorWang Yun-Chungen
dc.contributor.author王允中zh_TW
dc.date.accessioned2021-06-13T06:35:10Z-
dc.date.available2006-01-27
dc.date.copyright2006-01-27
dc.date.issued2006
dc.date.submitted2006-01-16
dc.identifier.citation[1]K. M. Ho,C. T. Chan,and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures”,Phys.Rev.Lett.65,3152 (1990)

[2] John. D. Joannopoulos , “Molding the flow of light” (1995)

[3] P. Russell, “Photonic crystal fibers”,Science, 299, 358 (2003)

[4] Kosaka, H.; Kawashima, “ Superprism phenomena in photonic crystals”,
Phy. Rev. B 58, 10096 (1998)

[5]Joannopoulos et. al., “Photonic crystals: putting a new twist on light”,
Nature, 386, 143 (1997)

[6], C Kittle, C.: Introduction to Solid-State Physics , chapter 1, Chapter 2 (1976)

[7] S. Guo and S. Albin, “Numerical techniques for excitation and analysis of defect modes in photonic cryatal”, Vol.11,No.9/Optics express 1089 (2003)

[8] Villeneuve, PR, Fan, S. and Joannopoulos, JD, Microcavities in photonic crystals: Mode symmetry, tenability, and coupling efficiency, Phys. Rev. B 54, 7837 (1996)

[9]E. Yablonovitch and T. J. Gmitter, “photonic band structure: The Face-Centered-Cubic Case”, Phys. Rev. Lett. 63, 1950 (1989)

[10] Maldovan M., Thomas E. L., & Carter C. W., “ Layer-by-layer diamond-like woodpile structure with a large photonic band gap”,Appl.Phys.Lett,Vol.84,No.3.19 January (2004)

[11] Min Qiu, and Sailing He, “Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions”, Phys. Rev. Lett. 61, 12871 (2000)

[12] S. Guo and S. Albi, “A simple plane wave implementation method for photonic crystal calculations” ,Opt. Express 11, 167 (2003),

[13] S. Fan et al.,J. Opt.Soc.Am.B 18,162 (2001)

[14] S. Fan et al., “ Evolution of the higher order band structure in FCC photonic crystals” ,Phys. Rev. Lett. 80, 960 (1998)

[15] Shangping Guo “Photonic crystals: modeling and simulation” ,May (2003)

[16]侯鴻龍, 對二維光子晶體不同結構之研究, 國立交通大學光電工程所碩士論文 (2002)

[17]林振華, 電磁場與天線分析: 使用時域有限差分法(FDTD), 全華科技圖書股份有限公司

[18] M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide coupler”, J. Lightwave Technol. 19,1970 (2001)

[19]Mit http:ab-initio.mit.edu

[20] Max-planck-institute of Microstructure Physics,Weinberg , “Tetragonal photonic woodpile structures” ,Applied Phys. B-Lasers and Optics (2002)

[21 Sözüer, HS; Haus, JW; Inguva, R. Affiliation, “photonic bands: Convergence problems with the plane-wave method”, Phys. Rev B 45 13926(1992)

[22] Villeneuve PR, Piche M, “ Photonic band gaps in two-dimensional square and hexagonal lattices”, Phys. Rev. B 46 4969(1993)

[23] S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguide” , IEEE J. Quantum Electron. 38, 47 (2002)

[24] S. G.. Johnson et al., “Guiding,bending,and splitting of electromagnetic wave in highly confined photonic crystal waveguide”, Appl.Phys.Lett.77.3490 (2000)

[25] P. Russell, “Photonic crystal fibers”, Science
vol 299, 358 (2003)

[26]蔡雅芝,淺談光子晶體,物理雙月刊,二十一卷四期pp.445-450(1999)

[27]K. M. Leung and Y. F. Liu, “photonic band structure: the plane-wave Method” ,Phys. Rev. B,vol.41,pp.10188-10190 (1990)

[28] S. Guo,S. Aibin , “Numerical techniques for excitation and analysis of defect modes in photonic crystals”, Journal: Optics Express, vol.11, Issue 9, p.1080 (2003)

[29] C. M. Bowden and J.P. Dowling Ed., “photonic band gap: development and applications of materials exhibiting photonic band gap” ,J.Opt.Soc.Am.B10 (1993)

[30] D. Hermann, M. Frank, K. Busch and P. Wolfle, “Photonic band
structure computations”, Opt. Express, 167, 167 (2001)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34823-
dc.description.abstract本文總共分為六章。第一章包括光子晶體的簡介、文獻的回顧;第二章介紹在本文中所用的數值方法,將平面波展開法分為1、2、3維倒出理論公式。平面波展開法是一種非常直接且方便計算光子晶體能帶的數值方法;我們可以利用求解其特徵率,而得到光子能帶結構。第三章我們首先分析光子晶體在二維三角排列與蜂窩排列能帶圖,並採用一般色散關係來畫無周期性介質,與論文做比對,以驗證我們計算的正確性。然後我們改變結構的參數,以探討光子晶體的特性。接著再將其延伸至表面模態與平面波的收斂關係,最後再討論三維中fcc與diamond晶格的能帶關係;第四章則介紹缺陷的理論基礎,並且找出三角晶格與蜂窩狀晶格的模態,與應用於光子晶體在光通訊元件。最後利用光子晶體缺陷具有共振腔的特性,在光子晶體中製造兩條缺陷,利用基本耦合的效應,我們可以得到一方向耦合器(directional couplers)。並且利用defect mode 與波導管mode去得到我們想要波前進的方向,最後再利用FDTD方法去討論三維波導管(waveguide)的能量損失性;本模擬都與論文與期刊中的數據做比較,幾乎可以得到正確的結果,用來驗證本論文程式的正確性。zh_TW
dc.description.abstractThe thesis has divided into six chapters .the first includes the introduction of photonic crystal and reviewer. Second we investigate the frequency domain method and the 1D、2D、3D formulas. The plane wave method is very convenient and directly numerical method。The Maxwell equations are represented eigenvalue-eigenfunction form and the bands caused by different periodic lattice arrangement are calculated。 The third chapter we analyze the band gap in honeycomb and triangular structure to compare the structure uniform。Then we change the index and discuss the properties of photonic crystal. The influence on the accuracy due to different grid number in reciprocal lattice space is also examined. We analyze optical cavity and directional coupled to find the properties of mode and control the direction of wave propagation by matching up defect mode and waveguide mode。 Finally we use FDTD numerical method to analyze 3D waveguide propagation and discuss it `s lose .
Comparing the simulation result with those available in journals or experiments we almost get correct results with them and excellent agreement has been obtain in all case we can prove the accuracy of program codes within the thesis
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:35:10Z (GMT). No. of bitstreams: 1
ntu-95-R92543073-1.pdf: 1529370 bytes, checksum: bde29fa7d8eb02afbbcf527bf74138ac (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
摘 要Ⅰ
Abstract Ⅱ
目 錄 Ⅲ
第一章 概論
1-1 光子晶體理論與應用介紹 1
1-2 光子晶體能帶 1
1-3 能帶法計算 2
1-4 文獻回顧 2
第二章 光子晶體理論分析
2-1 Bloch 定理 4
2-2 光子晶體理論推導與假設 6
2-3 平面波展開法. 7
2-3-1 一維平面波展開法 9
2-3-2 二維TE,TM mode 10
2-3-3 三維平面波展開法 12
第三章 能帶分析
3-1 光子晶體與布里淵區分析 14
3-2 能帶分析 15
3-2-1 三角晶格能帶分析 17
3-2-2 蜂窩晶格能帶分析 18
3-2-3 表面模態分析 20
3-3 收斂關係 22
3-4 三維光子晶體概論 26
3-4-1 三維Fcc晶格能帶分析 27
3-4-2 三維diamond晶格能帶分析28
第四章 光子晶體應用
4-1 共振腔(defect)理論推導 31
4-2 變分定理 34
4-2-1 三角晶格共振腔 38
4-2-2 蜂窩晶格共振腔 40
4-3 光波導介紹 41
第五章 時域有限差分法(FDTD)
5-1 時域有限差分法 43
5-1-2 吸收性邊界條件PML 49
5-1-3-穩定條件 51
5-2 光波導能帶 52
5-3 光波導 54
5-4 光波導應用 61
5-5 三維FDTD波導管 64
第六章
6-1 未來的發展 67
6-2 期望 68
參考文獻 69
dc.language.isozh-TW
dc.subject光子晶體zh_TW
dc.subjectphotonic crystalen
dc.title二維與三維光子晶體特性研究與應用zh_TW
dc.titleTwo and Three-Dimensional Photonic Crystal Band Gap Analysis and Applicationsen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張家歐,黃俊誠,黃家健
dc.subject.keyword光子晶體,zh_TW
dc.subject.keywordphotonic crystal,en
dc.relation.page71
dc.rights.note有償授權
dc.date.accepted2006-01-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved