請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34813
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鍾孝文 | |
dc.contributor.author | Yi-Ru Lin | en |
dc.contributor.author | 林益如 | zh_TW |
dc.date.accessioned | 2021-06-13T06:35:01Z | - |
dc.date.available | 2008-01-26 | |
dc.date.copyright | 2006-01-26 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-01-16 | |
dc.identifier.citation | Chapter 1
1. Comroe JH, Jr. The lung. Sci Am 1966;214(2):57-66 passim. 2. Wagner HN, Jr., Sabiston DC, Jr., Iio M, McAfee JG, Meyer JK, Langan JK. Regional Pulmonary Blood Flow in Man by Radioisotope Scanning. Jama 1964;187:601-603. 3. Hatabu H, Chen Q, Stock KW, Gefter WB, Itoh H. Fast magnetic resonance imaging of the lung. Eur J Radiol 1999;29(2):114-132. 4. Hatabu H, Alsop DC, Listerud J, Bonnet M, Gefter WB. T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging. Eur J Radiol 1999;29(3):245-252. 5. Bergin CJ, Glover GM, Pauly J. Magnetic resonance imaging of lung parenchyma. J Thorac Imaging 1993;8(1):12-17. 6. Mayo JR, MacKay A, Muller NL. MR imaging of the lungs: value of short TE spin-echo pulse sequences. AJR Am J Roentgenol 1992;159(5):951-956. 7. Alsop DC, Hatabu H, Bonnet M, Listerud J, Gefter W. Multi-slice, breathhold imaging of the lung with submillisecond echo times. Magn Reson Med 1995;33(5):678-682. 8. Hatabu H, Gaa J, Tadamura E, Edinburgh KJ, Stock KW, Garpestad E, Edelman RR. MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence. Eur J Radiol 1999;29(2):152-159. 9. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995;34(3):293-301. 10. Mai VM, Berr SS. MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 1999;9(3):483-487. 11. Mai VM, Liu B, Polzin JA, Li W, Kurucay S, Bankier AA, Knight-Scott J, Madhav P, Edelman RR, Chen Q. Ventilation-perfusion ratio of signal intensity in human lung using oxygen-enhanced and arterial spin labeling techniques. Magn Reson Med 2002;48(2):341-350. 12. Hatabu H, Gaa J, Kim D, Li W, Prasad PV, Edelman RR. Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 1996;36(4):503-508. 13. Amundsen T, Kvaerness J, Jones RA, Waage A, Bjermer L, Nilsen G, Haraldseth O. Pulmonary embolism: detection with MR perfusion imaging of lung--a feasibility study. Radiology 1997;203(1):181-185. 14. Amundsen T, Torheim G, Kvistad KA, Waage A, Bjermer L, Nordlid KK, Johnsen H, Asberg A, Haraldseth O. Perfusion abnormalities in pulmonary embolism studied with perfusion MRI and ventilation-perfusion scintigraphy: an intra-modality and inter-modality agreement study. J Magn Reson Imaging 2002;15(4):386-394. 15. Lehnhardt S, Thorsten Winterer J, Strecker R, Hogerle S, Herget G, Geens V, Laubenberger J, Uhrmeister P. Assessment of pulmonary perfusion with ultrafast projection magnetic resonance angiography in comparison with lung perfusion scintigraphy in patients with malignant stenosis. Invest Radiol 2002;37(11):594-599. 16. Roberts DA, Gefter WB, Hirsch JA, Rizi RR, Dougherty L, Lenkinski RE, Leigh JS, Jr., Schnall MD. Pulmonary perfusion: respiratory-triggered three-dimensional MR imaging with arterial spin tagging--preliminary results in healthy volunteers. Radiology 1999;212(3):890-895. 17. Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D, Jakob PM. Quantitative perfusion mapping of the human lung using 1H spin labeling. J Magn Reson Imaging 2003;18(2):260-265. 18. Levin DL, Chen Q, Zhang M, Edelman RR, Hatabu H. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 2001;46(1):166-171. 19. Hatabu H, Tadamura E, Levin DL, Chen Q, Li W, Kim D, Prasad PV, Edelman RR. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med 1999;42(6):1033-1038. 20. Chen Q, Levin DL, Kim D, David V, McNicholas M, Chen V, Jakob PM, Griswold MA, Goldfarb JW, Hatabu H, Edelman RR. Pulmonary disorders: ventilation-perfusion MR imaging with animal models. Radiology 1999;213(3):871-879. 21. Berthezene Y, Croisille P, Wiart M, Howarth N, Houzard C, Faure O, Douek P, Amiel M, Revel D. Prospective comparison of MR lung perfusion and lung scintigraphy. J Magn Reson Imaging 1999;9(1):61-68. 22. Iwasawa T, Saito K, Ogawa N, Ishiwa N, Kurihara H. Prediction of postoperative pulmonary function using perfusion magnetic resonance imaging of the lung. J Magn Reson Imaging 2002;15(6):685-692. 23. Ohno Y, Hatabu H, Higashino T, Takenaka D, Watanabe H, Nishimura Y, Yoshimura M, Sugimura K. Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. AJR Am J Roentgenol 2004;182(1):73-78. 24. Dalen JE, Dexter L. Pulmonary embolism. Jama 1969;207(8):1505-1507. 25. Li KL, Zhu XP, Waterton J, Jackson A. Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 2000;12(2):347-357. 26. Wong JC, Provenzale JM, Petrella JR. Perfusion MR imaging of brain neoplasms. AJR Am J Roentgenol 2000;174(4):1147-1157. Chapter 2 1. Levin DL, Hatabu H. MR evaluation of pulmonary blood flow. J Thorac Imaging 2004;19(4):241-249. 2. Levin DL, Chen Q, Zhang M, Edelman RR, Hatabu H. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 2001;46(1):166-171. 3. Hatabu H, Gaa J, Kim D, Li W, Prasad PV, Edelman RR. Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 1996;36(4):503-508. 4. Ohno Y, Kawamitsu H, Higashino T, Takenaka D, Watanabe H, van Cauteren M, Fujii M, Hatabu H, Sugimura K. Time-resolved contrast-enhanced pulmonary MR angiography using sensitivity encoding (SENSE). J Magn Reson Imaging 2003;17(3):330-336. 5. Fink C, Bock M, Puderbach M, Schmahl A, Delorme S. Partially parallel three-dimensional magnetic resonance imaging for the assessment of lung perfusion--initial results. Invest Radiol 2003;38(8):482-488. 6. Thompson HK, Jr., Starmer CF, Whalen RE, McIntosh HD. Indicator Transit Time Considered as a Gamma Variate. Circ Res 1964;14:502-515. 7. Nikolaou K, Schoenberg SO, Brix G, Goldman JP, Attenberger U, Kuehn B, Dietrich O, Reiser MF. Quantification of pulmonary blood flow and volume in healthy volunteers by dynamic contrast-enhanced magnetic resonance imaging using a parallel imaging technique. Invest Radiol 2004;39(9):537-545. 8. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 1999;19(7):701-735. 9. Hatabu H, Tadamura E, Prasad PV, Chen Q, Buxton R, Edelman RR. Noninvasive pulmonary perfusion imaging by STAR-HASTE sequence. Magn Reson Med 2000;44(5):808-812. 10. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992;23(1):37-45. 11. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992;89(1):212-216. 12. Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, Campbell TA, Rosen BR. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995;34(6):878-887. 13. Schwarzbauer C, Morrissey SP, Haase A. Quantitative magnetic resonance imaging of perfusion using magnetic labeling of water proton spins within the detection slice. Magn Reson Med 1996;35(4):540-546. 14. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995;34(3):293-301. 15. Helpern JA, Branch CA, Yongbi MN, Huang NC. Perfusion imaging by un-inverted flow-sensitive alternating inversion recovery (UNFAIR). Magn Reson Imaging 1997;15(2):135-139. 16. Schwarzbauer C, Heinke W. BASE imaging: a new spin labeling technique for measuring absolute perfusion changes. Magn Reson Med 1998;39(5):717-722. 17. Mai VM, Berr SS. MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 1999;9(3):483-487. 18. Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, Warach S. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994;192(2):513-520. 19. Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997;10(4-5):237-249. Chapter 3 1. Lewis DH, Kott B, Jacobson AF. Single-photon emission tomography imaging of the chest. Respir Care 2001;46:940-945. 2. Hatabu H, Gaa J, Kim D, Li W, Prasad PV, Edelman RR. Pulmonary perfusion: dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 1996;36:503-508. 3. Amundsen T, Kvaerness J, Jones RA, Waage A, Bjermer L, Nilsen G, Haraldseth O. Pulmonary embolism: detection with MR perfusion imaging of lung--a feasibility study. Radiology. 1997;203:181-185. 4. Roberts DA, Gefter WB, Hirsch JA, Rizi RR, Dougherty L, Lenkinski RE, Leigh JS Jr, Schnall MD. Pulmonary perfusion: respiratory-triggered three-dimensional MR imaging with arterial spin tagging--preliminary results in healthy volunteers. Radiology 1999;212:890-895. 5. Uematsu H, Levin DL, Hatabu H. Quantification of pulmonary perfusion with MR imaging: recent advances. Eur J Radiol 2001;37:155-163. 6. Amundsen T, Torheim G, Kvistad KA, Waage A, Bjermer L, Nordlid KK, Johnsen H, Asberg A, Haraldseth O. Perfusion abnormalities in pulmonary embolism studied with perfusion MRI and ventilation-perfusion scintigraphy: an intra-modality and inter-modality agreement study. J Magn Reson Imaging 2002;15:386-394. 7. Lehnhardt S, Thorsten Winterer J, Strecker R, Hogerle S, Herget G, Geens V, Laubenberger J, Uhrmeister P. Assessment of pulmonary perfusion with ultrafast projection magnetic resonance angiography in comparison with lung perfusion scintigraphy in patients with malignant stenosis. Invest Radiol 2002;37:594-599. 8. Berthezene Y, Croisille P, Wiart M, Howarth N, Houzard C, Faure O, Douek P, Amiel M, Revel D. Prospective comparison of MR lung perfusion and lung scintigraphy. J Magn Reson Imaging 1999;9:61-68. 9. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34:293-301. 10. Mai VM, Berr SS. MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 1999;9:483-487. 11. Mai VM, Liu B, Polzin JA, Li W, Kurucay S, Bankier AA, Knight-Scott J, Madhav P, Edelman RR, Chen Q. Ventilation-perfusion ratio of signal intensity in human lung using oxygen-enhanced and arterial spin labeling techniques. Magn Reson Med 2002;48:341-350. 12. Amundsen T, Torheim G, Waage A, Bjermer L, Steen PA, Haraldseth O. Perfusion magnetic resonance imaging of the lung: characterization of pneumonia and chronic obstructive pulmonary disease. A feasibility study. J Magn Reson Imaging 2000;12:224-231. 13. Hatabu H, Tadamura E, Levin DL, Chen Q, Li W, Kim D, Prasad PV, Edelman RR. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med 1999; 42:1033-1038. 14. Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D, Jakob PM. Quantitative perfusion mapping of the human lung using 1H spin labeling. J Magn Reson Imaging 2003;18:260-265. 15. Roberts DA, Rizi RR, Lipson DA, Ferrante MA, Bearn L, Rolf L, Baumgardner J, Yamomoto A, Hatabu H, Hansen-Flaschen J, Gefter WB, Schnall MD. Dynamic observation of pulmonary perfusion using continuous arterial spin-labeling in a pig model. J Magn Reson Imaging 2001;14:175-180. 16. Levin DL, Chen Q, Zhang M, Edelman RR, Hatabu H. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 2001;46:166-171. 17. Chen Q, Levin DL, Kim D, David V, McNicholas M, Chen V, Jakob PM, Griswold MA, Goldfarb JW, Hatabu H, Edelman RR. Pulmonary disorders: ventilation- perfusion MR imaging with animal models. Radiology 1999;213:871-879. 18. Slavin GS, Wolff SD, Gupta SN, Foo TKF. First-pass myocardial perfusion MR imaging with interleaved notched saturation: feasibility study. Radiology 2001;219:258-263. 19. Williamson JM, Lipsitz SR, Manatunga AK. Modeling kappa for measuring dependent categorical agreement data. Biostatistics. 2000;1:191-202. 20. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-310. 21. Moller HE, Chen XJ, Saam B, Hagspiel KD, Johnson GA, Altes TA, de Lange EE, Kauczor HU. MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 2002;47:1029-1051. 22. Kauczor HU. Current issues in hyperpolarized gases in MRI: biomedical investigations and clinical applications. NMR Biomed 2000;13:173-175. 23. Johkoh T, Muller NL, Kavanagh PV, Cartier Y, Mayo JR, Tomiyama N, Murakami T, Naito H, Nakamura H, Moriya H. Scintigraphic and MR perfusion imaging in preoperative evaluation for lung volume reduction surgery: pilot study results. Radiat Med 2000;18:277-281. 24. Fratz S, Hess J, Schwaiger M, Martinoff S, Stern H. More accurate quantification of pulmonary blood flow magnetic resonance imaging than by lung perfusion scintigraphy in patients with Fontan circulation. Circulation 2002; 106:1510-1513. 25. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998;39:702-708. 26. Iwasawa T, Saito K, Ogawa N, Ishiwa N, Kurihara H. Prediction of postoperative pulmonary function using perfusion magnetic resonance imaging of the lung. J Magn Reson Imaging 2002;15:685-692. 27. Matsuoka S, Uchiyama K, Shima H, Terakoshi H, Nojiri Y, Oishi S, Ogata H. Detectability of pulmonary perfusion defect and influence of breath holding on contrast-enhanced thick-slice 2D and on 3D MR pulmonary perfusion images. J Magn Reson Imaging 2001;14:580-585. 28. Carr JC, Laub G, Zheng J, Pereles FS, Finn JP. Time-resolved three-dimensional pulmonary MR angiography and perfusion imaging with ultrashort repetition time. Acad Radiol 2002;9:1407-1418. 29. Mulkern RV, Wong ST, Winalski C, Jolesz FA. Contrast manipulation and artifact assessment of 2D and 3D RARE sequences. Magn Reson Imaging 1990;8:557-566. Chapter 4 1. Berthezene Y, Croisille P, Wiart M, Howarth N, Houzard C, Faure O, Douek P, Amiel M, Revel D. Prospective comparison of MR lung perfusion and lung scintigraphy. J Magn Reson Imaging 1999;9(1):61-68. 2. Fink C, Bock M, Puderbach M, Schmahl A, Delorme S. Partially parallel three-dimensional magnetic resonance imaging for the assessment of lung perfusion--initial results. Invest Radiol 2003;38(8):482-488. 3. Sabiniewicz R, Romanowicz G, Bandurski T, Chojnicki M, Alszewicz-Baranowska J, Erecinski J, Lass P. Lung perfusion scintigraphy in the diagnosis of peripheral pulmonary stenosis in patients after repair of Fallot tetralogy. Nucl Med Rev Cent East Eur 2002;5(1):11-13. 4. Lehnhardt S, Thorsten Winterer J, Strecker R, Hogerle S, Herget G, Geens V, Laubenberger J, Uhrmeister P. Assessment of pulmonary perfusion with ultrafast projection magnetic resonance angiography in comparison with lung perfusion scintigraphy in patients with malignant stenosis. Invest Radiol 2002;37(11):594-599. 5. Dessy H, Hermus JP, van den Heuvel F, Oei HY, Krenning EP, Hess J. Echocardiographic and radionuclide pulmonary blood flow patterns after transcatheter closure of patent ductus arteriosus. Circulation 1996;94(2):126-129. 6. Pruckmayer M, Zacherl S, Salzer-Muhar U, Schlemmer M, Leitha T. Scintigraphic assessment of pulmonary and whole-body blood flow patterns after surgical intervention in congenital heart disease. J Nucl Med 1999;40(9):1477-1483. 7. Amundsen T, Kvaerness J, Jones RA, Waage A, Bjermer L, Nilsen G, Haraldseth O. Pulmonary embolism: detection with MR perfusion imaging of lung--a feasibility study. Radiology 1997;203(1):181-185. 8. Roberts DA, Gefter WB, Hirsch JA, Rizi RR, Dougherty L, Lenkinski RE, Leigh JS, Jr., Schnall MD. Pulmonary perfusion: respiratory-triggered three-dimensional MR imaging with arterial spin tagging--preliminary results in healthy volunteers. Radiology 1999;212(3):890-895. 9. Uematsu H, Levin DL, Hatabu H. Quantification of pulmonary perfusion with MR imaging: recent advances. Eur J Radiol 2001;37(3):155-163. 10. Hatabu H, Gaa J, Kim D, Li W, Prasad PV, Edelman RR. Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 1996;36(4):503-508. 11. Levin DL, Chen Q, Zhang M, Edelman RR, Hatabu H. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 2001;46(1):166-171. 12. Hatabu H, Tadamura E, Levin DL, Chen Q, Li W, Kim D, Prasad PV, Edelman RR. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med 1999;42(6):1033-1038. 13. Chen Q, Levin DL, Kim D, David V, McNicholas M, Chen V, Jakob PM, Griswold MA, Goldfarb JW, Hatabu H, Edelman RR. Pulmonary disorders: ventilation-perfusion MR imaging with animal models. Radiology 1999;213(3):871-879. 14. Amundsen T, Torheim G, Kvistad KA, Waage A, Bjermer L, Nordlid KK, Johnsen H, Asberg A, Haraldseth O. Perfusion abnormalities in pulmonary embolism studied with perfusion MRI and ventilation-perfusion scintigraphy: an intra-modality and inter-modality agreement study. J Magn Reson Imaging 2002;15(4):386-394. 15. Iwasawa T, Saito K, Ogawa N, Ishiwa N, Kurihara H. Prediction of postoperative pulmonary function using perfusion magnetic resonance imaging of the lung. J Magn Reson Imaging 2002;15(6):685-692. 16. Ohno Y, Hatabu H, Higashino T, Takenaka D, Watanabe H, Nishimura Y, Yoshimura M, Sugimura K. Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. AJR Am J Roentgenol 2004;182(1):73-78. 17. Dalen JE, Dexter L. Pulmonary embolism. Jama 1969;207(8):1505-1507. 18. Li KL, Zhu XP, Waterton J, Jackson A. Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 2000;12(2):347-357. 19. Wong JC, Provenzale JM, Petrella JR. Perfusion MR imaging of brain neoplasms. AJR Am J Roentgenol 2000;174(4):1147-1157. 20. Slavin GS, Wolff SD, Gupta SN, Foo TK. First-pass myocardial perfusion MR imaging with interleaved notched saturation: feasibility study. Radiology 2001;219(1):258-263. 21. Williamson JM, Lipsitz SR, Manatunga AK. Modeling kappa for measuring dependent categorical agreement data. Biostatistics 2000;1(2):191-202. 22. Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-310. 23. Hopkins SR, Belzberg AS, Wiggs BR, McKenzie DC. Pulmonary transit time and diffusion limitation during heavy exercise in athletes. Respir Physiol 1996;103(1):67-73. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34813 | - |
dc.description.abstract | 肺部的微灌流狀況在肺功能中扮演著重要的角色,因為肺部的區域血流供應與氣體供應是否良好匹配決定了氧氣的交換效率。目前在臨床上是使用核子醫學來量測肺部區域血流供應,其測量原理是利用具有放射性的大型聚合物,對比劑粒子直徑略大於微血管,因此由靜脈注入後會卡在肺部微血管中,可以提供區域血流狀況。近年來由於磁振造影的技術進步,磁振影像亦可用來量測肺部微灌流。在本篇論文中,我們將介紹磁振造影的微灌流影像的兩種技術,一種是利用注射對比劑後快速取得的動態磁振影像,另一種方法則不需打入對比劑,而是標記流入的動脈磁矩,藉由標記前後的影像差距來量測微灌流。我們將這兩種方法應用在健康受試者上,證明在當影像切面是在冠狀切面的時候,有些切面的流入磁矩無法正確標記,造成動脈標記法對於血流的低估,量測的結果與對比劑顯影法不一致;因此,在肺部使用動脈標記法,必須小心使用,以免造成誤判。此外,在血流供應不正常的患者方面,譬如患有先天性心臟病的患者,我們發現基於造影原理的差異,磁振造影的對比劑顯影法與核子醫學可能會得到不一致的結果,我們對此則提出限制積分法來修正磁振造影的血流計算方法,並證明此方法量測到與核醫一致的結果。我們認為磁振造影有助於肺部微灌流的量測,未來在臨床上的應用將越來越廣闊。 | zh_TW |
dc.description.abstract | Pulmonary perfusion is a fundamental parameter of lung function, since matched distribution of the regional pulmonary blood flow and ventilation is a prerequisite for gas exchange to occur efficiently. Radionuclide techniques using intravenous administration of radioactive macroaggregates have been used for the clinical assessment of regional lung perfusion. Recently, magnetic resonance imaging has become feasible using ultra-short echo time sequence. In this thesis, we present recent advances in magnetic resonance pulmonary perfusion imaging, including magnetic resonance perfusion imaging using gadolinium contrasts agents (CE-MRI) or spin labeling of blood using naturally flowing spins as the source of intravascular signal (ASL). First, we apply flow-sensitive alternating inversion recovery (FAIR) and CE-MRI techniques in normal subjects, and demonstrate that FAIR imaging for pulmonary perfusion in the coronal plane provides equivalent rPBF information with CE-MRI only in the absence of tracer saturation effects, hence, FAIR should be carefully exercised to avoid misleading interpretations. Second, we show that discrepancy exists between lung perfusion scintigraphy (PS) and CE-MRI, resulted from the abnormal flow dynamic in patients with complex cardiovascular circulation such us patients with congenital heart diseases. A remedy using limited integration has been proposed, which provides consistent perfusion result as PS. We conclude that CE-MRI is facilitate in pulmonary perfusion and has significant potential for clinical use. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T06:35:01Z (GMT). No. of bitstreams: 1 ntu-95-F89921057-1.pdf: 2729710 bytes, checksum: 8053e531998f8653735e23e32f2e7ed4 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | Chinese abstract
English abstract Chapter 1 Introduction..………...…………………………………....1-1 1.1 Application of ASL and CE-MRI in normal subjects.……………………..1-3 1.2 Application of CE-MRI in Patients With Complex Pulmonary Perfusion...1-5 1.3 References………………………………………………………………….1-7 Chapter 2 Principle of perfusion MRI……………..………………..2-1 2.1 Dynamic contrast-enhanced techniques.…………………...……………..2-1 2.2 Arterial spin labeling techniques……………………………………...……2-6 2.3 References……………………………………………………………….2-15 Chapter 3 Using ASL in Pulmonary Perfusion……………………...3-1 3.1 Introduction.…………………………………….…………...……………..3-1 3.2 Methods and Materials……………………………………………………..3-4 3.2.1 Theory………………………………………………………………..3-4 3.2.2 Experiments; Part I: Inter-sequence comparison…………………….3-8 3.2.3 Experiments; Part II: Intra-sequence comparison…………………..3-13 3.3 Results…………………...………………………………………………..3-19 3.3.1 Inter-sequence comparison…………………………….………….3-19 3.3.2 Intra-sequence comparison…………………………………..……..3-21 3.4 Discussion and Conclusion…………………………………………….....3-33 3.5 References………………………………………………………………3-40 Chapter 4 Using CE-MRI in Pulmonary Perfusion………………...4-1 4.1 Introduction.…………………………………….…………...……………..4-1 4.2 Methods and Materials……………………………………………………..4-5 4.2.1 Subjects……………………………………………………………..4-5 4.2.2 Data Acquisitions…...………………………………………………..4-5 4.2.3 Data Analysis…...……………………………..……………………..4-8 4.2.4 Statistical Analysis..………………………………………………..4-11 4.3 Results…………………………………………………………………….4-15 4.3.1 rPBF and rPBV……………………………………………………..4-15 4.3.2 Show Cases…...………………………...…………………………..4-15 4.3.3 Limited Integration Result………………..…………………...…..4-17 4.3.4 Regional Result..………………………..…………………………..4-17 4.4 Discussion………………………………………………………………..4-33 4.5 Conclusion…………………………………………………………….….4-35 4.6 References…………………………………………………………...……4-36 Chapter 5 Conclusion………………………………………….……...5-1 | |
dc.language.iso | en | |
dc.title | 氫原子核磁振造影在肺部微灌流影像之技術與應用 | zh_TW |
dc.title | 1H Magnetic Resonance Imaging in Pulmonary Perfusion: Techniques and Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳銘庭,高怡宣,劉鶴齡,劉益瑞,柯正雯,黃騰毅 | |
dc.subject.keyword | 磁振造影,肺部微灌流影像,對比劑顯影磁共振影像,動脈標記法, | zh_TW |
dc.subject.keyword | Magnetic Resonance Imaging,MRI,pulmonary perfusion,contrast-enhanced MRI,arterial spin labeling, | en |
dc.relation.page | 117 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-01-17 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。